Description

  铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子。现在铭铭想用绳子把所有的珠子连接成一个整体。

  现在已知所有珠子互不相同,用整数1到n编号。对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci,j根不同颜色的绳子中选择一根将它们连接。如果把珠子看作点,把绳子看作边,将所有珠子连成一个整体即为所有点构成一个连通图。特别地,珠子不能和自己连接。

  铭铭希望知道总共有多少种不同的方案将所有珠子连成一个整体。由于答案可能很大,因此只需输出答案对1000000007取模的结果

Solution

用总数减去不连通的就是答案

设 \(f[S]\) 表示 \(S\) 集合中,所有点连通的图的方案.

设 \(g[S]\) 表示 \(S\) 集合中任意连边.

\(f[S]=g[S]-\sum_{S'∈S}f[S']*g[S\)^\(S']\)

玩样例发现,这样做会减多,因为 \(g[S\)^\(S']\) 的方案中也有连通图,所以在连通时\(f[S']\)和\(g[S\)^\(S']\)是对称的,会重复

所以需要强制定一个节点作为代表元,\(S'\)集合必须包含这个点

神奇的是:

按理来说写成这样才对:

  for(int i=1;i<=m;i++){
for(int S=i&(i-1);S;S=i&(S-1))
if(!((i^S)&(i&(-i))))f[i]=(f[i]+1ll*f[S]*g[i^S])%mod;
f[i]=(g[i]-f[i]+mod)%mod;
}

写成这样也对了,懵逼.jpg

  for(int i=1;i<=m;i++){
for(int S=i&(i-1);S;S=i&(S-1))
if(!((i^S)&1))f[i]=(f[i]+1ll*f[S]*g[i^S])%mod;
f[i]=(g[i]-f[i]+mod)%mod;
#include<bits/stdc++.h>
using namespace std;
const int N=18,mod=1e9+7;
int f[1<<16],g[1<<16],c[N][N],n;
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&c[i][j]);
int m=(1<<n)-1;
for(int i=0;i<=m;i++){
g[i]=1;
for(int j=1;j<=n;j++)
if(i&(1<<(j-1)))
for(int k=j+1;k<=n;k++)
if((i&(1<<(k-1))))g[i]=1ll*g[i]*(c[j][k]+1)%mod;
}
for(int i=1;i<=m;i++){
for(int S=i&(i-1);S;S=i&(S-1))
if(!((i^S)&1))f[i]=(f[i]+1ll*f[S]*g[i^S])%mod;
f[i]=(g[i]-f[i]+mod)%mod;
}
printf("%d\n",f[m]);
return 0;
}

bzoj 2560: 串珠子的更多相关文章

  1. BZOJ 2560: 串珠子 (状压DP+枚举子集补集+容斥)

    (Noip提高组及以下),有意者请联系Lydsy2012@163.com,仅限教师及家长用户. 2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MB Su ...

  2. ●BZOJ 2560 串珠子

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2560 题解: 容斥,状压计数dp 首先求出一个数组 g[s] 表示集合内的点的连边方案数(两 ...

  3. bzoj 2560: 串珠子【状压dp】

    正难则反,设g[s]为集合s不一定联通的方案数,这个很好求,把边数+1乘起来即可,f[s]为s一定联通的方案数 f考虑容斥,就是g[s]-Σf[nw]*g[s^nw],nw是s的子集,这样就减掉了不联 ...

  4. bzoj2560串珠子 状压dp+容斥(?)

    2560: 串珠子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 515  Solved: 348[Submit][Status][Discuss] ...

  5. BZOJ 2560(子集DP+容斥原理)

    2560: 串珠子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 757  Solved: 497[Submit][Status][Discuss] ...

  6. 【BZOJ2560】串珠子 状压DP+容斥

    [BZOJ2560]串珠子 Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个 ...

  7. [tsinsen_A1278]串珠子

    [tsinsen_A1278]串珠子 试题描述 铭铭有 \(n\) 个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数 \(1\) ...

  8. 【BZOJ2560】串珠子(状压DP,容斥原理)

    题意: 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体.现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在 ...

  9. BZOJ 3277 串 & BZOJ 3473 字符串 (广义后缀自动机、时间复杂度分析、启发式合并、线段树合并、主席树)

    标签那么长是因为做法太多了... 题目链接: (bzoj 3277) https://www.lydsy.com/JudgeOnline/problem.php?id=3277 (bzoj 3473) ...

随机推荐

  1. 听翁恺老师mooc笔记(16)--程序设计与C语言

    问题1:计算机遍布生活的各个方面,若你需要一个功能可以下载APP,我们需要的大部分功能都可以找到对应的APP,如果没有可以自己写一个软件,但是很少人需要这么做,那么我们为什么学习计算机编程语言? 学习 ...

  2. Alpha第五天

    Alpha第五天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...

  3. 2018上c语言第0次作业

    随笔: 1.翻阅邹欣老师博客关于师生关系博客,并回答下列问题,每个问题的答案不少于500字: (1)最理想的师生关系是健身教练和学员的关系,在这种师生关系中你期望获得来自老师的哪些帮助? 答:对此问题 ...

  4. pickle使用及案例

    一.字典格式数据源写入数据库文件 #!/usr/bin/env python # -*- coding:utf-8 -*- import pickle accounts ={1000:'alex', ...

  5. Scrum 冲刺 第四日

    目录 要求 项目链接 燃尽图 问题 今日任务 明日计划 成员贡献量 小组会议 要求 各个成员今日完成的任务(如果完成的任务为开发或测试任务,需给出对应的Github代码签入记录截图:如果完成的任务为调 ...

  6. python+flask 分分钟完美解析阿里云日志

    拿到了自己阿里云服务器的日志,对其需要进行处理. class Read_Rizhi: def __init__(self,filename): self.filename=filename def o ...

  7. MyEclipse的多模块Maven web(ssm框架整合)

    Maven的多模块可以让项目结构更明确,提高功能的内聚,降低项目的耦合度,真正的体现出分层这一概念. 我们在操作中,要明白为什么这样做,要了解到更深的层次,这样,我们就不限于个别软件了. 话不多说,直 ...

  8. 使用freemaker 导出word 含多张图片,若无图片则显示文本信息

    1.使用的Microsoft Office 2007,添加一个无边框的表格,并插入一张图片,最后另存为编码utf-8,一开始保存的word xml格式的,图片的base64编码位于文档最后,暂时没有找 ...

  9. emqtt 试用(四)emq 的主题访问控制 acl.conf

    访问控制(ACL) EMQ 消息服务器通过 ACL(Access Control List) 实现 MQTT 客户端访问控制. ACL 访问控制规则定义: 允许(Allow)|拒绝(Deny) 谁(W ...

  10. Bootstrap 栅格系统简单整理

    Bootstrap内置了一套响应式.移动设备优先的流式栅格系统,随着屏幕设备或视口(viewport)尺寸的增加,系统会自动分为最多12列. 总结一下我近期的学习Bootstrap的一些理解: 一.. ...