题目大意:

 

给你一个关系图,判断是否合法。每个人都有师父和徒弟,可以有很多个;

若A是B的师父,B是C的师父,则A也算C的师父。

不合法: 

1) . 互为师徒;(有回路) 
 2) .你的师父是你徒弟的徒弟,或者说你的徒弟是你师父的师父。(出现回路)

思路:

判断有向图中是否存在回路或至少3元环; 
此题至少有三种做法,此处更新拓扑排序的做法:

解题方法:

一:拓扑排序:

1) . 统计每个点的入度;

2) . 将入度为0的点加入队列;

3) . 出去队首元素,将此元素所连接的点入度减一,若此后入度为0则加入队列;

4) . 判断队列循环次数,若等于n则不存在3元环,则此关系图合法;

题目链接:

点击打开链接

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<map>
#include<stack>
#include<vector>
#include<ctime>
using namespace std;
const int N = ;
const int M = ;
int n,m;
int tot,flag;
int in[N],head[N];
struct lp
{
int u,v,nex;
lp(){}
lp(int a,int b,int c):
u(a),v(b),nex(c){}
}cw[N];
void add(int a,int b){
cw[++tot]=lp(a,b,head[a]);
head[a]=tot;
}
void tuopu(){
queue<int>Q;
while(!Q.empty())Q.pop();
for(int i=;i<n;++i){
if(in[i]==)Q.push(i);
}
int t=;
while(!Q.empty()){
t++;
int u=Q.front();Q.pop();
for(int i=head[u];i!=-;i=cw[i].nex){
int v=cw[i].v;
in[v]--;
if(in[v]==)Q.push(v);
}
}
if(t==n)flag=;
}
int main(int argc, char const *argv[])
{
int a,b;
while(~scanf("%d%d",&n,&m)&&(n)){
memset(in,,sizeof(in));
tot=-;
memset(head,-,sizeof(head));
for(int i=;i<m;++i){
scanf("%d%d",&a,&b);
add(a,b);
in[b]++;
}
flag=;
tuopu();
if(flag)printf("YES\n");
else printf("NO\n");
}
return ;
}

二:Tarjan:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<map>
#include<stack>
#include<vector>
#include<ctime>
using namespace std;
const int N = ;
const int M = ;
int n,tot,flag,idex;
int head[N],vis[N];
int low[N],dfn[N];
int qltNum;
int qltMap[N];
stack<int>st;
struct lp{
int to,nex;
lp(){}//构造函数
lp(int a,int b):
to(a),nex(b){}
}cw[N*N];
void add(int a,int b){
cw[++tot]=lp(b,head[a]);
head[a]=tot;
}
void dfs(int u,int fa){
dfn[u]=low[u]=++idex;
vis[u]=;
st.push(u);
int v;
for(int i=head[u];i!=-;i=cw[i].nex){
v=cw[i].to;
if(v==fa){
flag=;
break;
}
if(!vis[v]){
dfs(v,u);
if(flag)return;
low[u]=min(low[u],low[v]);
}else if(vis[v]==){
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){//缩点
qltNum++;
int t=;
do{
t++;
v=st.top();st.pop();
vis[v]=;
qltMap[v]=qltNum;
if(t>=){
flag=;
return;
}
}while(v!=u);
//cout<<t<<"\n";
}
}
void tarjan(){
for(int i=;i<=n;++i){
if(!vis[i]){
dfs(i,-);
}
if(flag)return;
}
}
void init(){//初始化
while(!st.empty())st.pop();
qltNum=idex=flag=;
tot=-;
memset(head,-,sizeof(head));
memset(vis,,sizeof(vis));
memset(qltMap,,sizeof(qltMap));
}
int main(int argc, char const *argv[]){
int a,b,m;
while(~scanf("%d%d",&n,&m)&&(n)){
init();
memset(head,-,sizeof(head));
for(int i=;i<m;++i){
scanf("%d%d",&a,&b);
a++,b++;
add(a,b);
}
tarjan();
if(flag)printf("NO\n");
else printf("YES\n");
}
return ;
}

hdu3342-判断有向图中是否存在(至少)3元环或回路-拓扑排序的更多相关文章

  1. HDU3342:判断有向图中是否存在3元环-Tarjan或拓扑排序

    题目大意: 给你一个关系图,判断是否合法.每个人都有师父和徒弟,可以有很多个: 若A是B的师父,B是C的师父,则A也算C的师父. 不合法:  1) . 互为师徒:(有回路)  2) .你的师父是你徒弟 ...

  2. <数据结构>XDOJ323.判断有向图中是否有环

    问题与解答 问题描述 判断有向图中是否有环. 输入格式 输入数据第一行是一个正整数,表示n个有向图,其余数据分成n组,每组第一个为一个整数,表示图中的顶点个数n,顶点数不超过100,之后为有向图的邻接 ...

  3. 有向图的拓扑排序算法JAVA实现

    一,问题描述 给定一个有向图G=(V,E),将之进行拓扑排序,如果图有环,则提示异常. 要想实现图的算法,如拓扑排序.最短路径……并运行看输出结果,首先就得构造一个图.由于构造图的方式有很多种,这里假 ...

  4. hdoj 4324 Triangle LOVE【拓扑排序判断是否存在环】

    Triangle LOVE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  5. 有向图和拓扑排序Java实现

    package practice; import java.util.ArrayDeque; import java.util.Iterator; import java.util.Stack; pu ...

  6. Expm 10_1 带负权值边的有向图中的最短路径问题

    [问题描述] 对于一个带负权值边的有向图,实现Bellman-Ford算法,求出从指定顶点s到其余顶点的最短路径,并判断图中是否存在负环. package org.xiu68.exp.exp10; p ...

  7. POJ 1860 Currency Exchange(如何Bellman-Ford算法判断图中是否存在正环)

    题目链接: https://cn.vjudge.net/problem/POJ-1860 Several currency exchange points are working in our cit ...

  8. DFS应用——遍历有向图+判断有向图是否有圈

    [0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解 "DFS应用--遍历有向图+判断有向图是否有圈" 的idea 并用源代码加以实现 : ...

  9. HDU3342有向图判圈DFS&&拓扑排序法

    HDU3342 Legal or Not 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3342 题目意思:一群大牛互相问问题,大牛有不会的,会被更厉害 ...

随机推荐

  1. 开源一个定时任务调度器 webscheduler

    在企业应用中定时任务调度的需求是必不可少的,比如定时同步数据,定时结转数据,定时检测异常等等.公司之前是在使用一款采用.net 开发的windows服务形式的定时程序,基本能满足需求,在一段时间的时候 ...

  2. 测试&标准说明文章

    这是一篇测试用文章,主要想想怎么把纸质本上的习惯沿袭到博客上来 #coding=utf-8 import sys def main(): print "this is some code f ...

  3. 【Python】 python对象的文件化 pickle

    pickle 之前隐隐约约在哪里看到过pickle这个模块但一直没怎么用过.然后让我下定决心学习一下这个模块的原因竟然是[妹抖龙女(男)主在工作中用到了pickle哈哈哈].嗯嗯,不扯皮了.pickl ...

  4. STL --> vector向量

    vector向量 vector是一种对象实体,能够容纳许多其他类型相同的元素,因为又被称为容器. 头文件 在使用它时,需要包含头文件 <vector>. #include <vect ...

  5. 00_Linux介绍_我的Linux之路

    原文章发布于特克斯博客www.susmote.com 什么是操作系统 操作系统(Operating System,简称OS)是管理和控制计算机硬件与软件资源的计算机程序,是直接运行在"裸机& ...

  6. 第二次作业评分可能要 delay 一些

    各位同学,因为我现在在出差,昨天刚刚到旧金山,加上倒时差,所以这次作业我处理得会更慢一些,希望谅解. 另外,博客园的邮件通知邮件好多都进垃圾箱了,所以如果你有什么问题我没回且你关心的,请给我写邮件:j ...

  7. 项目Alpha冲刺Day6

    一.会议照片 二.项目进展 1.今日安排 熟悉后台框架并编写.继续搭建前台框架模版.熟悉前端框架开发流程.完成前端热部署配置.完成部分后台用户信息相关接口.解决后台jdk1.8日期在框架中的使用. 2 ...

  8. 算法第四版学习笔记之优先队列--Priority Queues

    软件:DrJava 参考书:算法(第四版) 章节:2.4优先队列(以下截图是算法配套视频所讲内容截图) 1:API 与初级实现 2:堆得定义 3:堆排序 4:事件驱动的仿真 优先队列最重要的操作就是删 ...

  9. 201421123042 《Java程序设计》第6周学习总结

    1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰 ...

  10. bzoj千题计划288:bzoj1876: [SDOI2009]SuperGCD

    http://www.lydsy.com/JudgeOnline/problem.php?id=1876 高精压位GCD 对于  GCD(a, b)  a>b 若 a 为奇数,b 为偶数,GCD ...