[LeetCode] Triangle 三角形
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
这道题给了我们一个二维数组组成的三角形,让我们寻找一条自上而下的路径,使得路径和最短。那么那道题后还是先考虑下暴力破解,我们可以发现如果要遍历所有的路径的话,那可以是阶乘级的时间复杂度啊,OJ必灭之,趁早断了念想比较好。必须要优化时间复杂度啊,题目中给的例子很容易把人带偏,让人误以为贪婪算法可以解题,因为看题例子中的红色数组,在根数字2的下方选小的数字3,在3的下方选小的数字5,在5的下方选小的数字1,每次只要选下一层相邻的两个数字中较小的一个,似乎就能得到答案了。其实是不对的,贪婪算法可以带到了局部最小,但不能保证每次都带到全局最小,很有可能在其他的分支的底层的数字突然变的超级小,但是贪婪算法已经将其他所有分支剪掉了。所以为了保证我们能得到全局最小,动态规划Dynamic Programming还是不二之选啊。其实这道题和 Dungeon Game 非常的类似,都是用DP来求解的问题。那么其实我们可以不新建dp数组,而是直接复用triangle数组,我们希望一层一层的累加下来,从而使得 triangle[i][j] 是从最顶层到 (i, j) 位置的最小路径和,那么我们如何得到状态转移方程呢?其实也不难,因为每个结点能往下走的只有跟它相邻的两个数字,那么每个位置 (i, j) 也就只能从上层跟它相邻的两个位置过来,也就是 (i-1, j-1) 和 (i-1, j) 这两个位置,那么状态转移方程为:
triangle[i][j] = min(triangle[i - 1][j - 1], triangle[i - 1][j])
我们从第二行开始更新,注意两边的数字直接赋值上一行的边界值,那么最终我们只要在最底层找出值最小的数字,就是全局最小的路径和啦,代码如下:
解法一:
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
for (int i = ; i < triangle.size(); ++i) {
for (int j = ; j < triangle[i].size(); ++j) {
if (j == ) {
triangle[i][j] += triangle[i - ][j];
} else if (j == triangle[i].size() - ) {
triangle[i][j] += triangle[i - ][j - ];
} else {
triangle[i][j] += min(triangle[i - ][j - ], triangle[i - ][j]);
}
}
}
return *min_element(triangle.back().begin(), triangle.back().end());
}
};
这种方法可以通过OJ,但是毕竟修改了原始数组triangle,并不是很理想的方法。在网上搜到一种更好的DP方法,这种方法复制了三角形最后一行,作为用来更新的一位数组。然后逐个遍历这个DP数组,对于每个数字,和它之后的元素比较选择较小的再加上面一行相邻位置的元素做为新的元素,然后一层一层的向上扫描,整个过程和冒泡排序的原理差不多,最后最小的元素都冒到前面,第一个元素即为所求。代码如下:
解法二:
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
vector<int> dp(triangle.back());
for (int i = (int)triangle.size() - ; i >= ; --i) {
for (int j = ; j <= i; ++j) {
dp[j] = min(dp[j], dp[j + ]) + triangle[i][j];
}
}
return dp[];
}
};
下面我们来看一个例子,对于输入数组:
-1
2 3
1 -1 -3
5 3 -1 2
下面我们来看DP数组的变换过程(红色数字为每次dp数组中值改变的位置):
DP:5 3 -1 2
DP: 3 -1 2
DP:4 -2 -1 2
DP:4 -2 -4 2
DP: -2 -4 2
DP:0 -1 -4 2
DP:-2 -1 -4 2
参考资料:
https://leetcode.com/problems/triangle/
https://leetcode.com/problems/triangle/discuss/38730/DP-Solution-for-Triangle
https://leetcode.com/problems/triangle/discuss/38918/C%2B%2B-top-down-and-bottom-up-solutions.
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Triangle 三角形的更多相关文章
- LeetCode Triangle 三角形(最短路)
题意:给一个用序列堆成的三角形,第n层的元素个数为n,从顶往下,每个元素可以选择与自己最近的两个下层元素往下走,类似一棵二叉树,求最短路. [], [,4], [6,,7], [4,,8,3] 注意: ...
- [LeetCode 120] - 三角形(Triangle)
问题 给出一个三角形,找出从顶部至底部的最小路径和.每一步你只能移动到下一行的邻接数字. 例如,给出如下三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 从顶部至底部的最 ...
- LeetCode 976. Largest Perimeter Triangle (三角形的最大周长)
题目标签:Array 题目给了我们一个 边长的 array, 让我们找出 最大边长和的三角形,当然前提得是这三条边能组成三角形.如果array 里得边长组成不了三角形,返回0. 最直接的理解就是,找到 ...
- LeetCode 976. 三角形的最大周长(Largest Perimeter Triangle) 33
976. 三角形的最大周长 976. Largest Perimeter Triangle 题目描述 给定由一些正数(代表长度)组成的数组 A,返回由其中三个长度组成的.面积不为零的三角形的最大周长. ...
- LeetCode 120. Triangle三角形最小路径和 (C++)
题目: Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjace ...
- LeetCode 120. 三角形最小路径和(Triangle)
题目描述 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径 ...
- LeetCode 120. Triangle (三角形最小路径和)详解
题目详情 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径 ...
- leetcode — triangle
/** * Source : https://oj.leetcode.com/problems/triangle/ * * * Given a triangle, find the minimum p ...
- 120 Triangle 三角形最小路径和
给出一个三角形(数据数组),找出从上往下的最小路径和.每一步只能移动到下一行中的相邻结点上.比如,给你如下三角形:[ [2], [3,4], [6,5,7], [4,1,8,3]] ...
随机推荐
- Android来电监听和去电监听
我觉得写文章就得写得有用一些的,必须要有自己的思想,关于来电去电监听将按照下面三个问题展开 1.监听来电去电有什么用? 2.怎么监听,来电去电监听方式一样吗? 3.实战,有什么需要特别注意地方? 监听 ...
- WCF学习系列汇总
最近在学习WCF,打算把一整个系列的文章都”写“出来,包括理论和实践,这里的“写”是翻译,是国外的大牛写好的,我只是搬运工外加翻译.翻译的不好,大家请指正,谢谢了.如果觉得不错的话,也可以给我点赞,这 ...
- C#设计模式之简单工厂模式(Simple Factory)
1. 概述 简单工厂模式就是将一个类的实例化交给一个静态工厂来执行. 2. 使用频率 中 3. 模式结构 3.1 机构图 3.2 模式中的角色 Product:抽象类,把具体产品类公共的代码进行抽象和 ...
- Easyui dialog中嵌入iframe
如果easyui dialog的地址属性用href超链接,easyui 不会加载整个url页面,只会截取url目标页的body体间的html, 如果想加载把其他页面 加载进dialog的iframe中 ...
- Hibernate入门详解
学习Hibernate ,我们首先要知道为什么要学习它?它有什么好处?也就是我们为什么要学习框架技术? 还要知道 什么是Hibernate? 为什么要使用Hibernate? Hib ...
- Web 前端开发精华文章推荐(jQuery、HTML5、CSS3)【系列十二】
2012年12月12日,[<Web 前端开发人员和设计师必读文章>系列十二]和大家见面了.梦想天空博客关注 前端开发 技术,分享各种增强网站用户体验的 jQuery 插件,展示前沿的 HT ...
- javascript的defer和async的区别。
我们常用的script标签,有两个和性能.js文件下载执行相关的属性:defer和async defer的含义[摘自https://developer.mozilla.org/En/HTML/Elem ...
- Atitit.日志系统slf4j的使用
Atitit.日志系统slf4j的使用 SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar ...
- windows 7 + virtualbox安装centos+mono+jexus
1. 下载安装virtualbox和virtualbox extension 2. 创建并安装centos虚拟机 3. 下载并安装libgdiplus,gdi+库 4. 下载并安装Mono 5. 下载 ...
- Quartz2D内存管理
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "PingFang SC"; color: #239619 } p.p2 ...