谁创造了AlexNet?

  AlexNet是有Hinton大神的弟子Alex Krizhevsky提出的深度卷积神经网络。它可视为LeNet的更深更宽的版本。

AlexNet主要用到的技术

  • 成功使用ReLU作为CNN的激活函数,并验证了其效果在较深的神经网络超过了sigmiod,成功解决了sigmoid在网络较深时的梯度弥散问题。
  • 训练时候使用Dropout以一定概率随机失活了一部分神经元,一面模型过拟合。
  • 使用重叠最大池化方法:池化核尺寸大于步长,是的卷积层的输出之间有重叠部分,提升了特征的丰富性。
  • 提出了LRN(局部相应归一化),对局部神经元创建竞争机制,使得响应大的神经元输出变得更大,抑制了反馈较小的神经元。一定程度提升了泛化能力。
  • 使用CUDA加速,两块GTX 580 3GB 显卡加速。这导致论文中的网络结构图分为两路训练。
  • 采用数据增强:随机地从226*226的原图中截取224*224大小的区域(水平翻转以及镜像),数据增强有效抑制过拟合,提高泛化能力。

网络结构

  整个AlexNet有8个需要训练的层(不包含LRN和池化层),前5层是卷积层,后三层是全连接层,其中最后的全连接层输出是一个1000通道softmax映射归一化结果,表示输入在1000类别的响应情况,或者说在归属类上的概率分布,再细致的说就是每个通道的softmax输出表示输入属于该类的可能性。由于当时显存容量的限制,作者使用了2块GTX580 3GB RAM 的GPU并行训练,所以网络分成两路。

如今我们显卡已经足够,可以并成一路。

以上的网络中:

  • 5个卷积层的卷积核依次为:11*11*3@96,5*5*96@256,3*3*256@384,3*3*384@384,3*3*384@265,步长依次为4,1,1,1,1,模式为VALID,SAME,SAME,SAME,SAME
  • 池化层在第①第②和第⑤个卷积层之后,每一次池化,尺寸减半。
  • LRN在第①和第②的池化层和ReLU后的后的卷积层之间
  • 随后就是三个全连接层,最后一个全连接层是softmax输出的结果。

AlexNet的实现

(待续)

参考

https://blog.csdn.net/sun_28/article/details/52134584

《tensorflow实战》

AleNet模型笔记的更多相关文章

  1. 《C#并行编程高级教程》第9章 异步编程模型 笔记

    这个章节我个人感觉意义不大,使用现有的APM(异步编程模型)和EAP(基于时间的异步模型)就很够用了,针对WPF和WinForm其实还有一些专门用于UI更新的类. 但是出于完整性,还是将一下怎么使用. ...

  2. 关于thinkphp框架中模型笔记

    模型这一块,感觉学习的不是很清楚,单独水一贴thinkphp中模型的学习笔记. 0x01 模型类简介 数据库中每一张表对应一个模型,类名就是表名,类里面的成员变量就是列名, 把一张表对应为一个类,其中 ...

  3. Netty Reactor 线程模型笔记

    引用: https://www.cnblogs.com/TomSnail/p/6158249.html https://www.cnblogs.com/heavenhome/articles/6554 ...

  4. tp5模型笔记---多对多

    关联模型 一对一:HAS_ONE  以及对应的BELONEGS_TO 一对多:HAS_MANY 以及相对的BELONGS_TO 多对多:BELONGS_TO_MANY 步骤: 第一:创建Users模型 ...

  5. 经典卷积网络模型 — VGGNet模型笔记

    一.简介 VGGNet是计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研究的深度卷积神经网络.VGGNet探索了卷积神经网络深度与性能之间的 ...

  6. 经典卷积网络模型 — LeNet模型笔记

    LeNet-5包含于输入层在内的8层深度卷积神经网络.其中卷积层可以使得原信号特征增强,并且降低噪音.而池化层利用图像相关性原理,对图像进行子采样,可以减少参数个数,减少模型的过拟合程度,同时也可以保 ...

  7. 机器学习-HMM隐马尔可夫模型-笔记

    HMM定义 1)隐马尔科夫模型 (HMM, Hidden Markov Model) 可用标注问题,在语音识别. NLP .生物信息.模式识别等领域被实践证明是有效的算法. 2)HMM 是关于时序的概 ...

  8. 机器学习-LDA主题模型笔记

    LDA常见的应用方向: 信息提取和搜索(语义分析):文档分类/聚类.文章摘要.社区挖掘:基于内容的图像聚类.目标识别(以及其他计算机视觉应用):生物信息数据的应用; 对于朴素贝叶斯模型来说,可以胜任许 ...

  9. 机器学习-EM算法-pLSA模型笔记

    pLSA模型--基于概率统计的pLSA模型(probabilistic Latent Semantic Analysis,概率隐语义分析),增加了主题模型,形成简单的贝叶斯网络,可以使用EM算法学习模 ...

随机推荐

  1. 阿里云API网关(4)快速入门(开放 API)

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  2. 前端学习之jquery/下

    前端学习之jquery 一 属性操作 html(): console.log($("div").html()); $(".test").html("& ...

  3. js中call和apply的用法

    1. 每个函数都包含两个非继承而来的方法:call()方法和apply()方法. 2. 相同点:这两个方法的作用是一样的. 都是在特定的作用域中调用函数,等于设置函数体内this对象的值,以扩充函数赖 ...

  4. lvs 负载均衡 NAT模式

    1.原理 基于NAT机制实现.当用户请求到达director之后,director将请求报文的目标地址(即VIP)改成选定的realserver地址,同时将报文的目标端口也改成选定的realserve ...

  5. myeclipse自动添加注释

    开发需要,新建类的时候,需要加自己的名字,每次都要自己写,嫌麻烦,修改一下myeclipse配置文件即可 打开window---preferences 选中 new Java files 点击edit ...

  6. [C#]在 DotNetCore 下的 Swagger UI 自定义操作

    1.Swagger UI 是什么? Swagger UI 是一个在线的 API 文档生成与测试工具,你可以将其集成在你的 API 项目当中. 支持 API 自动同步生成文档 高度自定义,可以自己扩展功 ...

  7. 跨域访问 - 跨域请求 同源策略概念对跨域请求的影响 及几种解决跨域请求的方法如 jsonp

    为什么会设置同源策略 > 适用于浏览器的一种资源访问策略 > 同源策略(Same origin policy)是一种约定,它是浏览器最核 心也最 基本的安全功能,如果缺少了同源策略,则浏览 ...

  8. 前端小白想要编写可维护的js

    我是一名前端小白,之前没写过多少代码,心里没有代码质量这个概念,人人都说代码是团队的产物,应该将代码写规范,但是我对具体什么样的代码是可维护的是茫然的. 我没写过多少代码,本来好多东西就不咋会,每次给 ...

  9. [Luogu 3810]三维偏序

    Description 有 $ n $ 个元素,第 $ i $ 个元素有 $ a_i $ .$ b_i $ .$ c_i $ 三个属性,设 $ f(i) $ 表示满足 $ a_j \leq a_i $ ...

  10. [AHOI2012]铁盘整理

    题目描述 输入输出格式 输入格式: 共两行.第一行为铁盘个数N(1<=N<=50),第二行为N个不同的正整数,分别为从上到下的铁盘的半径R.(1<=R<=100) 输出格式: ...