AleNet模型笔记
谁创造了AlexNet?
AlexNet是有Hinton大神的弟子Alex Krizhevsky提出的深度卷积神经网络。它可视为LeNet的更深更宽的版本。
AlexNet主要用到的技术
- 成功使用ReLU作为CNN的激活函数,并验证了其效果在较深的神经网络超过了sigmiod,成功解决了sigmoid在网络较深时的梯度弥散问题。
- 训练时候使用Dropout以一定概率随机失活了一部分神经元,一面模型过拟合。
- 使用重叠最大池化方法:池化核尺寸大于步长,是的卷积层的输出之间有重叠部分,提升了特征的丰富性。
- 提出了LRN(局部相应归一化),对局部神经元创建竞争机制,使得响应大的神经元输出变得更大,抑制了反馈较小的神经元。一定程度提升了泛化能力。
- 使用CUDA加速,两块GTX 580 3GB 显卡加速。这导致论文中的网络结构图分为两路训练。
- 采用数据增强:随机地从226*226的原图中截取224*224大小的区域(水平翻转以及镜像),数据增强有效抑制过拟合,提高泛化能力。
网络结构
整个AlexNet有8个需要训练的层(不包含LRN和池化层),前5层是卷积层,后三层是全连接层,其中最后的全连接层输出是一个1000通道softmax映射归一化结果,表示输入在1000类别的响应情况,或者说在归属类上的概率分布,再细致的说就是每个通道的softmax输出表示输入属于该类的可能性。由于当时显存容量的限制,作者使用了2块GTX580 3GB RAM 的GPU并行训练,所以网络分成两路。

如今我们显卡已经足够,可以并成一路。

以上的网络中:
- 5个卷积层的卷积核依次为:11*11*3@96,5*5*96@256,3*3*256@384,3*3*384@384,3*3*384@265,步长依次为4,1,1,1,1,模式为VALID,SAME,SAME,SAME,SAME
- 池化层在第①第②和第⑤个卷积层之后,每一次池化,尺寸减半。
- LRN在第①和第②的池化层和ReLU后的后的卷积层之间
- 随后就是三个全连接层,最后一个全连接层是softmax输出的结果。
AlexNet的实现
(待续)
参考
https://blog.csdn.net/sun_28/article/details/52134584
《tensorflow实战》
AleNet模型笔记的更多相关文章
- 《C#并行编程高级教程》第9章 异步编程模型 笔记
这个章节我个人感觉意义不大,使用现有的APM(异步编程模型)和EAP(基于时间的异步模型)就很够用了,针对WPF和WinForm其实还有一些专门用于UI更新的类. 但是出于完整性,还是将一下怎么使用. ...
- 关于thinkphp框架中模型笔记
模型这一块,感觉学习的不是很清楚,单独水一贴thinkphp中模型的学习笔记. 0x01 模型类简介 数据库中每一张表对应一个模型,类名就是表名,类里面的成员变量就是列名, 把一张表对应为一个类,其中 ...
- Netty Reactor 线程模型笔记
引用: https://www.cnblogs.com/TomSnail/p/6158249.html https://www.cnblogs.com/heavenhome/articles/6554 ...
- tp5模型笔记---多对多
关联模型 一对一:HAS_ONE 以及对应的BELONEGS_TO 一对多:HAS_MANY 以及相对的BELONGS_TO 多对多:BELONGS_TO_MANY 步骤: 第一:创建Users模型 ...
- 经典卷积网络模型 — VGGNet模型笔记
一.简介 VGGNet是计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研究的深度卷积神经网络.VGGNet探索了卷积神经网络深度与性能之间的 ...
- 经典卷积网络模型 — LeNet模型笔记
LeNet-5包含于输入层在内的8层深度卷积神经网络.其中卷积层可以使得原信号特征增强,并且降低噪音.而池化层利用图像相关性原理,对图像进行子采样,可以减少参数个数,减少模型的过拟合程度,同时也可以保 ...
- 机器学习-HMM隐马尔可夫模型-笔记
HMM定义 1)隐马尔科夫模型 (HMM, Hidden Markov Model) 可用标注问题,在语音识别. NLP .生物信息.模式识别等领域被实践证明是有效的算法. 2)HMM 是关于时序的概 ...
- 机器学习-LDA主题模型笔记
LDA常见的应用方向: 信息提取和搜索(语义分析):文档分类/聚类.文章摘要.社区挖掘:基于内容的图像聚类.目标识别(以及其他计算机视觉应用):生物信息数据的应用; 对于朴素贝叶斯模型来说,可以胜任许 ...
- 机器学习-EM算法-pLSA模型笔记
pLSA模型--基于概率统计的pLSA模型(probabilistic Latent Semantic Analysis,概率隐语义分析),增加了主题模型,形成简单的贝叶斯网络,可以使用EM算法学习模 ...
随机推荐
- Spring Security 入门(1-1)Spring Security是什么?
1.Spring Security是什么? Spring Security 是一个安全框架,前身是 Acegi Security , 能够为 Spring企业应用系统提供声明式的安全访问控制. Spr ...
- 超简单的jQuery前台分页,不需导包
今天我们介绍一个不需要导分页包的,非常容易上手的分页+模糊查询功能.接下来先介绍分页功能: 首先第一步,你要有个要去分页的列表.我这里敲了个简单的图书管理,作为展示的基础,它的列表为异步提交,由两部分 ...
- 归档(NSKeyedArchiver)的使用
归档的使用,是归于使用保存数据,但是一些简单的数据,如数组,字典等基本的数据类型,往往不使用在归档中,归档和plist以及UserDefaults最大的区别就在于,前者可以存放自定义的数据类型,而后两 ...
- PAT 1082. 射击比赛 (20)
本题目给出的射击比赛的规则非常简单,谁打的弹洞距离靶心最近,谁就是冠军:谁差得最远,谁就是菜鸟.本题给出一系列弹洞的平面坐标(x,y),请你编写程序找出冠军和菜鸟.我们假设靶心在原点(0,0). 输入 ...
- SpringMVC 使用MultipartFile实现文件上传(转)
http://blog.csdn.net/kouwoo/article/details/40507565 一.配置文件:SpringMVC 用的是 的MultipartFile来进行文件上传 所以我们 ...
- Lua版组合算法
高效率的排列组合算法--<编程珠矶>--Lua实现 原文链接 原文是python实现的,这里给出lua版本的实现 组合算法 本程序的思路是开一个数组,其下标表示1到m个数,数组元素 ...
- Spring AOP异常捕获原理
Spring AOP异常捕获原理: 被拦截的方法,须显式的抛出异常,且不能做任何处理, 这样AOP才能捕获到方法中的异常,进而进行回滚. 换句话说,就是在Service层的 ...
- HTML笔记05------AJAX
AJAX初探01 AJAX概念 概念:即"Asynchronous JavaScript And XML" 通过在后台与服务器进行少量数据交换,AJAX可以使网页实现异步更新.这意 ...
- 【django之admin,单例模式】
一.admin组件使用 Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.你可以在项目的 settings.py 中的 INSTAL ...
- Ajax/XHR/HTTP/jQuery Ajax
Ajax即通过XHR API使用js发起的异步网络请求,它不会导致页面刷新,因此是现代Web App的关键技术. HTTP协议是Web开发中最重要的网络协议,HTTP协议详细规定了请求和响应报文. 请 ...