上几篇给大家讲了OpenCV的图片人脸检测,而本文给大家带来的是比OpenCV更加精准的图片人脸检测Dlib库。

往期目录

视频人脸检测——Dlib版(六)
OpenCV添加中文(五)
图片人脸检测——Dlib版(四)
视频人脸检测——OpenCV版(三)
图片人脸检测——OpenCV版(二)
OpenCV环境搭建(一)
更多更新,欢迎访问我的github:https://github.com/vipstone/faceai

dlib与OpenCV对比

识别精准度:Dlib >= OpenCV

Dlib更多的人脸识别模型,可以检测脸部68甚至更多的特征点

效果展示

人脸的68个特征点

安装dlib

下载地址:https://pypi.org/simple/dlib/ 选择适合你的版本,本人配置:

Window 10 + Python 3.6.4

我现在的版本是:dlib-19.8.1-cp36-cp36m-win_amd64.whl

使用命令安装:

pip3 install D:\soft\py\dlib-19.8.1-cp36-cp36m-win_amd64.whl

显示结果: Processing d:\soft\py\dlib-19.8.1-cp36-cp36m-win_amd64.whl Installing collected packages: dlib Successfully installed dlib-19.8.1

为安装成功。

下载训练模型

训练模型用于是人脸识别的关键,用于查找图片的关键点。

下载地址:http://dlib.net/files/

下载文件:shape_predictor_68_face_landmarks.dat.bz2

当然你也可以训练自己的人脸关键点模型,这个功能会放在后面讲。

下载好的模型文件,我的存放地址是:C:\Python36\Lib\site-packages\dlib-data\shape_predictor_68_face_landmarks.dat.bz2

解压:shape_predictor_68_face_landmarks.dat.bz2得到文件:shape_predictor_68_face_landmarks.dat

代码实现

#coding=utf-8

import cv2
import dlib path = "img/meinv.png"
img = cv2.imread(path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #人脸分类器
detector = dlib.get_frontal_face_detector()
# 获取人脸检测器
predictor = dlib.shape_predictor(
"C:\\Python36\\Lib\\site-packages\\dlib-data\\shape_predictor_68_face_landmarks.dat"
) dets = detector(gray, 1)
for face in dets:
shape = predictor(img, face) # 寻找人脸的68个标定点
# 遍历所有点,打印出其坐标,并圈出来
for pt in shape.parts():
pt_pos = (pt.x, pt.y)
cv2.circle(img, pt_pos, 2, (0, 255, 0), 1)
cv2.imshow("image", img) cv2.waitKey(0)
cv2.destroyAllWindows()

图片人脸检测——Dlib版(四)的更多相关文章

  1. 视频人脸检测——Dlib版(六)

    往期目录 视频人脸检测--Dlib版(六) OpenCV添加中文(五) 图片人脸检测--Dlib版(四) 视频人脸检测--OpenCV版(三) 图片人脸检测--OpenCV版(二) OpenCV环境搭 ...

  2. 图片人脸检测——OpenCV版(二)

    图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 往期目录 视频人脸检测——Dlib版(六)OpenCV添加中文(五)图片人脸检测——Dlib版(四 ...

  3. 视频人脸检测——OpenCV版(三)

    视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇<图片人脸检测——OpenCV版(二)> 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人 ...

  4. 图片人脸检测(OpenCV版)

    图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下: 多 ...

  5. 在opencv3中进行图片人脸检测

    在opencv中,人脸检测用的是harr或LBP特征,分类算法用的是adaboost算法.这种算法需要提前训练大量的图片,非常耗时,因此opencv已经训练好了,把训练结果存放在一些xml文件里面.在 ...

  6. C#使用Emgu CV来进行图片人脸检测

    项目需求:某市级组织考试,在考试前需审核考生采集表中的考生照片是否合格,由于要审核的考生信息采集表有很多,原先进行的是手动人工审核,比较费时费力,审核的要求也很简单,并不判断考生是否是图片本人(身份验 ...

  7. 使用python实现人脸检测

    人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下: 多张脸 ...

  8. OpenCV 学习笔记 05 人脸检测和识别

    本节将介绍 Haar 级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与已知对象是否匹配. 本章将考虑如何将多个  Haar 级联分类器构成一个层次结构,即一个分类器能识别整体区域(如人脸) ...

  9. Python使用OpenCV实现简单的人脸检测

    文章目录: OpenCV安装 安装numpy 安装opencv OpenCV使用 OpenCV测试 效果图: 注意: 图片人脸检测 程序要求: 技术实现思路 注意 本文使用的环境是:Windows+P ...

随机推荐

  1. python——常用模块

    python--常用模块 1 什么是模块: 模块就是py文件 2 import time #导入时间模块 在Python中,通常有这三种方式来表示时间:时间戳.元组(struct_time).格式化的 ...

  2. UVA-10037 Bridge---过河问题进阶版(贪心)

    题目链接: https://vjudge.net/problem/UVA-10037 题目大意: N个人夜里过河,总共只有一盏灯,每次最多过两个人,然后需要有人将灯送回 才能继续过人,每个人过桥都需要 ...

  3. html标记语言 --图像标记

    html标记语言 --图像标记 三.图像标记 1.使用方法 <img src="路径/文件名.格式" width="属性值" height="属 ...

  4. ACE入门——ACE构建

    ACE(ADAPTIVE Communication Environment),ACE入门的第一课就是要学习怎么在自己的系统上构建ACE. ACE是跨平台的,这是它的一个很重要的特性,ACE支持很多的 ...

  5. MyBatis 与 Spring 整合

    MyBatis-Spring 项目 目前大部分的 Java 互联网项目,都是用 Spring MVC + Spring + MyBatis 搭建平台的. 使用 Spring IoC 可以有效的管理各类 ...

  6. nginx 安装及简单配置(适用 小白)

    一.nginxNginx是一个异步框架的 Web服务器,也可以用作反向代理,负载平衡器 和 HTTP缓存,Nginx可以部署在网络上使用FastCGI脚本.SCGI处理程序.WSGI应用服务器或Phu ...

  7. 三 Django模型层之Meta

    模型的Meta选项 本文阐述所有可用的元数据选项,你可以在模型的Meta类中设置他们 Meta选项 abstract 如果为True,就表示抽象基类 app_label 如果模型在INSTALLED_ ...

  8. Mysql运算符与函数(胖胖老师)

    use test;create table `employee`(    emp_no int unsigned,    emp_name varchar(30),    emp_sex varcha ...

  9. ●codeforces 528D Fuzzy Search

    题链: http://codeforces.com/problemset/problem/528/D 题解: FFT 先解释一下题意: 给出两个字符串(只含'A','T','C','G'四种字符),一 ...

  10. hdu 5430(几何)

    题意:求光在圆内反射n次后第一次返回原点的方案数 如果k和n-1可约分,则表明是循环多次反射方案才返回原点. #include <iostream> #include <cstrin ...