BZOJ 3168: [Heoi2013]钙铁锌硒维生素 [线性基 Hungary 矩阵求逆]
3168: [Heoi2013]钙铁锌硒维生素
题意:给一个线性无关组A,再给一个B,要为A中每个向量在B中选一个可以代替的向量,替换后仍然线性无关。判断可行和求字典序最小的解
PoPoQQQ orz
显然是一个二分图匹配的模型
A是一个线性基,用它把B中每个向量表示出来,那么\(B_i\)可以替换\(A_j\)当且仅当表示\(B_i\)用到了\(A_j\)
可是A并不是每一位独立,怎么求表示啊?
A和B可以看成两个矩阵(横向量组)
\(C*A=B \rightarrow C=B*A^{-1}\)
\(C_{i,j}=1\)说明表示\(B_i\)用到了\(A_j\),那么\(C^T\)就是这个二分图的邻接矩阵了
求矩阵的逆
这里说一种方法,对A进行高斯约当消元,右面的常数列换成单位矩阵。校园后,左面变成了单位矩阵,右面就是\(A^{-1}\)
二分图匹配字典序最小的解
求任意一个完美匹配,然后从1到n贪心选择字典序最小的解,方法和hungary类似,但是要比较匹配点和当前点的字典序
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef unsigned long long ll;
const int N=305, P=1e9+7;
inline int read() {
char c=getchar(); int x=0, f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
inline ll Pow(ll a, int b) {
ll ans=1;
for(; b; b>>=1, a=a*a%P)
if(b&1) ans=ans*a%P;
return ans;
}
inline void mod(int &x) {if(x<0) x+=P; else if(x>=P) x-=P;}
int n, g[N][N]; char s[N];
struct Matrix {
int a[N][N];
Matrix(){memset(a, 0, sizeof(a));}
int* operator [](int x) {return a[x];}
inline void im() {for(int i=1; i<=n; i++) a[i][i]=1;}
void print() {for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) printf("%d%c",a[i][j],j==n?'\n':' ');}
}a, b, c;
Matrix inverse(Matrix a) {
Matrix c; c.im();
for(int i=1; i<=n; i++) {
int r;
for(r=i; r<=n; r++) if(a[r][i]) break;
// r != n+1
if(r!=i) for(int j=1; j<=n; j++)
swap(a[i][j], a[r][j]), swap(c[i][j], c[r][j]);
ll inv = Pow(a[i][i], P-2);
for(int j=1; j<=n; j++)
a[i][j] = a[i][j]*inv%P, c[i][j] = c[i][j]*inv%P;
for(int k=1; k<=n; k++) if(k!=i) {
ll t = a[k][i]%P;
for(int j=1; j<=n; j++)
mod(a[k][j] -= a[i][j]*t%P), mod(c[k][j] -= c[i][j]*t%P);
}
}
return c;
}
Matrix operator *(Matrix a, Matrix b) {
Matrix c;
for(int i=1; i<=n; i++)
for(int k=1; k<=n; k++) if(a[i][k])
for(int j=1; j<=n; j++)
mod(c[i][j] += (ll)a[i][k]*b[k][j]%P);
return c;
}
int vis[N], le[N];
bool dfs(int u) {
for(int v=1; v<=n; v++)
if(!vis[v] && g[u][v]) {
vis[v]=1;
if(!le[v] || dfs(le[v])) {
le[v]=u;
return true;
}
}
return false;
}
bool dfs(int u, int now) {
for(int v=1; v<=n; v++)
if(!vis[v] && g[u][v]) {
vis[v]=1;
if(le[v]==now || (le[v]>now && dfs(le[v], now))) {
le[v]=u;
return true;
}
}
return false;
}
int main() {
freopen("in","r",stdin);
//freopen("ferrous.in","r",stdin);
//freopen("ferrous.out","w",stdout);
n=read();
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++) a[i][j] = read();
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++) b[i][j] = read();
c = b * inverse(a); //puts("c");c.print();
//Matrix t = a * inverse(a); puts("t"); t.print();
for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) if(c[i][j]) g[j][i]=1;
for(int i=1; i<=n; i++) {
memset(vis, 0, sizeof(vis));
if(!dfs(i)) {puts("NIE"); return 0;}
}
puts("TAK");
for(int i=1; i<=n; i++) {
memset(vis, 0, sizeof(vis));
dfs(i, i);
}
for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) if(le[j]==i) printf("%d\n",j);
}
BZOJ 3168: [Heoi2013]钙铁锌硒维生素 [线性基 Hungary 矩阵求逆]的更多相关文章
- BZOJ 3168 Heoi2013 钙铁锌硒维生素 矩阵求逆+匈牙利算法
题目大意:给定一个n∗n的满秩矩阵A和一个n∗n的矩阵B.求一个字典序最小的1...n的排列a满足将随意一个Ai换成Bai后矩阵A仍然满秩 我们考虑建立一个二分图.假设Ai能换成Bj.就在i−> ...
- BZOJ 3168 [Heoi2013]钙铁锌硒维生素 ——矩阵乘法 矩阵求逆
考虑向量ai能否换成向量bj 首先ai都是线性无关的,然后可以a线性表出bj c1*a1+c2*a2+...=bj 然后移项,得 c1/ci*a1+...-1/ci*bj+...=ai 所以当ci不为 ...
- 【BZOJ】3168: [Heoi2013]钙铁锌硒维生素
题解 Ca Fe Zn Se 显然我们既然初始矩阵就能通过线性变换变成单位矩阵,则该矩阵一定有逆 没有逆输出NIE 而且因为这些向量两两正交,则表示一个向量的时候表示方法唯一 那么我们求一个逆可以求出 ...
- 洛谷 P4100 [HEOI2013]钙铁锌硒维生素 解题报告
P4100 [HEOI2013]钙铁锌硒维生素 题目描述 银河队选手名单出来了!小林,作为特聘的营养师,将负责银河队选手参加 宇宙比赛的饮食. 众所周知,前往宇宙的某个星球,通常要花费好长好长的时间, ...
- 【BZOJ3168】[Heoi2013]钙铁锌硒维生素 高斯消元求矩阵的逆+匈牙利算法
[BZOJ3168][Heoi2013]钙铁锌硒维生素 Description 银河队选手名单出来了!小林,作为特聘的营养师,将负责银河队选手参加宇宙比赛的饮食.众所周知,前往宇宙的某个星球,通常要花 ...
- BZOJ 4568: [Scoi2016]幸运数字 [线性基 倍增]
4568: [Scoi2016]幸运数字 题意:一颗带点权的树,求树上两点间异或值最大子集的异或值 显然要用线性基 可以用倍增的思想,维护每个点向上\(2^j\)个祖先这些点的线性基,求lca的时候合 ...
- BZOJ 4671 异或图 | 线性基 容斥 DFS
题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...
- BZOJ 4004 [JLOI2015]装备购买 | 线性基
题目链接 Luogu P3265 题解 非常正常的线性基! 但是我不会线性基-- (吐槽:#define double long double 才过--) #include <cstdio> ...
- BZOJ.4516.[SCOI2016]幸运数字(线性基 点分治)
题目链接 线性基可以\(O(log^2)\)暴力合并.又是树上路径问题,考虑点分治. 对于每个点i求解 LCA(u,v)==i 时的询问(u,v),只需求出这个点到其它点的线性基后,暴力合并. LCA ...
随机推荐
- poj_1144Network(tarjan求割点)
poj_1144Network(tarjan求割点) 标签: tarjan 割点割边模板 题目链接 Network Time Limit: 1000MS Memory Limit: 10000K To ...
- Kafka监控安装
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...
- 调用webService的几种方式
转自:http://blog.csdn.net/u011165335/article/details/51345224 一.概览 方式1: HttpClient:可以用来调用webservie服务,也 ...
- vue -- v-cloak解决刷新或者加载出现闪烁(显示变量)
在使用vue绑定数据的时候,渲染页面时会出现变量闪烁,例如 <div class="#app"> <p>{{value.name}}</p> & ...
- windows 命令直接搜索局域网计算机的ip
以前都不知道还可以这样.....孤陋寡闻了... cmd 中 输入 net view ,搜索局域网或域中的计算机名. 找到要查询ip地址的计算机名后右键 标记,接着ping 一下,要用 -4 这个参数 ...
- [国嵌攻略][090][linux网络编程模型]
编程模型 Socket的实质就是一个接口,利用该接口,用户在使用不同的网络协议时,操作函数得以统一.而针对不同协议的差异性操作,则交给了Socket去自行解决. TCP编程模型 UDP编程模型
- 如何开发由Create-React-App 引导的应用(一)
此文章是翻译How to develop apps bootstrapped with Create React App 官方文档 系列文章 如何开发由Create-React-App 引导的应用 如 ...
- Sql Server——数据增删改
所谓数据的增删改就是在创建好数据库和表后向表中添加数据.删除表中的数据.更改表中的一些数据. 新增数据: 语法一: insert into 表名 values (数据内容) --这里需要 ...
- ASP.NET Core下发布网站
一.windows下发布到IIS 1.前奏:IIS上的准备 (1)IIS 必须安装AspNetCoreModule 模块 下载地址:(DotNetCore.2.0.3-WindowsHosting-a ...
- dubbo源码—Service Reply
dubbo通过netty将请求发送到provider的时候,provider之前已经启动好的NettyServer监听指定端口的时候会收到来自consumer的请求,将通过网络发送来的二进制编码成Re ...