【BZOJ 4380】4380: [POI2015]Myjnie (区间DP)
4380: [POI2015]Myjnie
Description
有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]。
有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个进行一次消费。但是如果这个最便宜的价格大于c[i],那么这个人就不洗车了。
请给每家店指定一个价格,使得所有人花的钱的总和最大。Input
第一行包含两个正整数n,m(1<=n<=50,1<=m<=4000)。
接下来m行,每行包含三个正整数a[i],b[i],c[i](1<=a[i]<=b[i]<=n,1<=c[i]<=500000)Output
第一行输出一个正整数,即消费总额的最大值。
第二行输出n个正整数,依次表示每家洗车店的价格p[i],要求1<=p[i]<=500000。
若有多组最优解,输出任意一组。Sample Input
7 5
1 4 7
3 7 13
5 6 20
6 7 1
1 2 5Sample Output
43
5 5 13 13 20 20 13HINT
Source
【分析】
不会做这题,感觉我不会区间DP orz。。
orz Claris大神
额。。代码跟他写的好像不是很一样。
g是最大收益,f是取到最大收益的时候的 选k的那个位置
还有一个p[i][j][k]表示[i][j][k...m]的[i][j][p[i][j][k]]时的收益最大
嗯。。g的继承和求p部分主要是加速的,重点是方程
g[i][j][k]=max(g[i][l-1][k]+g[l+1][j][k]+c[k]*h[x][k])
后面两个小区间的g已经是继承过的,所以真正表示的是区间[i][l-1]然后最小值>=k的最大收益
对这种DP不熟啊!!
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 60
#define Maxm 4010 int mymax(int x,int y) {return x>y?x:y;}
int mymin(int x,int y) {return x<y?x:y;} int f[Maxn][Maxn][Maxm],g[Maxn][Maxn][Maxm],p[Maxn][Maxn][Maxm];
int h[Maxn][Maxm];
int a[Maxm],b[Maxm],c[Maxm],id[Maxm]; struct node {int x,y;}t[Maxm];
bool cmp(node x,node y) {return x.x<y.x;} int op[Maxn];
void output(int l,int r,int k)
{
if(l>r) return;
k=p[l][r][k];
int x=f[l][r][k];
op[x]=t[k].x;
output(l,x-,k);output(x+,r,k);
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&a[i],&b[i],&c[i]);
t[i].x=c[i];t[i].y=i;
}
sort(t+,t++m,cmp);
for(int i=;i<=m;i++) id[t[i].y]=i;
memset(g,,sizeof(g));
for(int i=n;i>=;i--)
for(int j=i;j<=n;j++)
{
for(int k=i;k<=j;k++) for(int l=;l<=m;l++) h[k][l]=;
for(int k=;k<=m;k++) if(i<=a[k]&&b[k]<=j) for(int l=a[k];l<=b[k];l++) h[l][id[k]]++;
for(int k=i;k<=j;k++) for(int l=m-;l>=;l--) h[k][l]+=h[k][l+];
for(int k=m;k>=;k--)
{
int mx=;
for(int l=i;l<=j;l++)
{
int nw;
nw=g[i][l-][k]+g[l+][j][k]+h[l][k]*t[k].x;
if(nw>=mx) mx=nw,f[i][j][k]=l;
}
if(mx>=g[i][j][k+]) g[i][j][k]=mx,p[i][j][k]=k;
else g[i][j][k]=g[i][j][k+],p[i][j][k]=p[i][j][k+];
}
}
printf("%d\n",g[][n][]);
output(,n,);
for(int i=;i<=n;i++) printf("%d ",op[i]);
printf("\n");
return ;
}
2017-03-22 18:29:41
【BZOJ 4380】4380: [POI2015]Myjnie (区间DP)的更多相关文章
- 【BZOJ4380】[POI2015]Myjnie 区间DP
[BZOJ4380][POI2015]Myjnie Description 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i].有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[ ...
- Bzoj 1055: [HAOI2008]玩具取名 (区间DP)
Bzoj 1055: [HAOI2008]玩具取名 (区间DP) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1055 区间动态规划和可 ...
- BZOJ 4380 Myjnie 区间DP
4380: [POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 162 Solved: ...
- 【BZOJ-4380】Myjnie 区间DP
4380: [POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 162 Solved: ...
- BZOJ.1032.[JSOI2007]祖码(区间DP)
题目链接 BZOJ 洛谷 AC代码: 区间DP,f[i][j]表示消掉i~j需要的最少珠子数. 先把相邻的相同颜色的珠子合并起来. 枚举方法一样,处理一下端点可以碰撞消除的情况就行. 当然合并会出现问 ...
- Bzoj 1055 玩具取名(区间DP)
题面 题解 字符很麻烦,不妨用数字代替(比如1代表'W') const char c[5] = {0, 'W', 'I', 'N', 'G'}; 接着,像这种两个子串可以合并成另一个子串的题可以考虑区 ...
- bzoj 1068: [SCOI2007]压缩【区间dp】
神区间dp 设f[l][r][0]为在l到r中压缩的第一个字符为M,并且区间内只有这一个M,f[l][r][0]为在l到r中压缩的第一个字符为M,并且区间内有两个及以上的M 然后显然的转移是f[i][ ...
- BZOJ 1090: [SCOI2003]字符串折叠 区间DP
1090: [SCOI2003]字符串折叠 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
- BZOJ 4380 [POI2015]Myjnie | DP
链接 BZOJ 4380 题面 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]. 有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个 ...
随机推荐
- 客户端哈希加密(Javascript哈希加密,附源码)
摘要 我们很难想象用户在什么样的网络环境使用我们开发的应用,如果用户所处的网络环境不是一个可信任的环境,那么用户的账户安全就可能有威胁,比如用户登陆时提交的账号密码被网络嗅探器窃取:客户端加密数据能有 ...
- js中字符串和json数组的相互转换
//示例 var a={"name":"tom","sex":"男","age":"24& ...
- 【洛谷 P2764】 最小路径覆盖问题(最大流)
题目链接 首先有\(n\)条路径,每条路径就是一个点,然后尽量合并,答案就是点数-合并数. 套路拆点,源连入,出连汇,原有的边入出连. 最大流就是最大合并数,第一问解决. 然后怎么输出方案? 我是找到 ...
- python初步学习-python函数(一)
python 函数 函数是组织好的,可重复使用的,用来实现单一或者相关联功能的代码段. 函数能提高应用的模块性和代码的重复利用率. 函数定义 python中函数定义有一些简单的规则: 函数代码块以de ...
- 【文件上传】jquery之ajaxfileupload异步上传插件
来自:http://www.blogjava.net/sxyx2008/archive/2010/11/02/336826.html 由于项目需求,在处理文件上传时需要使用到文件的异步上传.这里使用J ...
- 2013-7-31hibernate二级缓存
难得闲 Fckeditor Fckconfig.js大部分配置都在这里面, 增加字体: 程序代码: FCKConfig.FontNames = 'Arial;Comic Sans MS ...
- webgote的例子(6)SQL注入(盲注)
SQL Injection - Blind (WS/SOAP) 本期演示的是盲注的手法.有些网站在与数据库交互的地方进行了很好的修饰,将报错的语句进行修改,即使你找到了注入点也无法下手拿数据,这个时候 ...
- 【swupdate文档 五】从可信的来源更新镜像
从可信的来源更新镜像 现在越来越重要的是,设备不仅要能安全地进行更新操作, 而且要能够验证发送的图像是否来自一个已知的源, 并且没有嵌入恶意软件. 为了实现这个目标,SWUpdate必须验证传入的镜像 ...
- SYN Flood攻击及防御方法 (转)
原文连接:http://blog.csdn.net/bill_lee_sh_cn/article/details/6065704 一.为什么Syn Flood会造成危害 这要从操作系统的TC ...
- U3D的一些常用基础脚本
修改渲染颜色和贴图 1: var texture :Texture ; 2: 3: function Start () { 4: renderer.material.mainTexture = te ...