【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)
4710: [Jsoi2011]分特产
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 99 Solved: 65Description
JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的分配方法:A:麻花,B:麻花、包子A:麻花、麻花,B:包子A:包子,B:麻花、麻花A:麻花、包子,B:麻花Input
输入数据第一行是同学的数量N 和特产的数量M。第二行包含M 个整数,表示每一种特产的数量。N, M 不超过1000,每一种特产的数量不超过1000Output
输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果MOD 1,000,000,007 的数值就可以了。Sample Input
5 4
1 3 3 5Sample Output
384835HINT
Source
【分析】
做这种题要容斥原理和组合数学都好才可以啊
假设只有一种,那么就是把n个球分到m个集合里面,要非空,就是C[N-1][M-1]
但是有多种,每种分别讨论的话是不能保证非空的,合起来讨论的话最后也不能除以x!【我一开始就这样错
所以要用容斥,
答案=总-至少一个空+至少两个空-至少三个空。。。
然后子问题变成n个球分到m个集合里,可以空,就是C[n+m-1][n-1]。因为是“至少”。
乘起来容斥即可。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1100
#define Mod 1000000007
#define LL long long int w[Maxn],c[*Maxn][*Maxn]; void init(int n)
{
for(int i=;i<=;i++) c[i][]=;
for(int i=;i<=;i++)
for(int j=;j<=i;j++)
c[i][j]=(c[i-][j]+c[i-][j-])%Mod;
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
init(n);
int ans=;
for(int i=;i<=m;i++)
{
scanf("%d",&w[i]);
}
for(int i=;i<n;i++)
{
int nw=,ii=n-i;
for(int j=;j<=m;j++)
{
nw=1LL*nw*c[w[j]+ii-][ii-]%Mod;
}
if(i&) ans=(ans-1LL*c[n][i]*nw%Mod)%Mod;
else ans=(ans+1LL*c[n][i]*nw)%Mod;
}
ans=(ans+Mod)%Mod;
printf("%d\n",ans);
return ;
}
2017-04-19 21:23:51
【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)的更多相关文章
- BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...
- 【bzoj 4710】 [Jsoi2011]分特产
题目 容斥加组合计数 显然答案是 \[\sum_{i=0}^n(-1)^i\binom{n}{i}f_{n-i}\] \(f_i\)表示至多有\(i\)个人没有拿到特产 考虑求\(f\) 发现\(m\ ...
- 【bzoj4710】[Jsoi2011]分特产 容斥原理+组合数学
题目描述 JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因 ...
- BZOJ 4710 [Jsoi2011]分特产 解题报告
4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...
- 4710: [Jsoi2011]分特产
4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
随机推荐
- LintCode 391: Count Of Airplanes
LintCode 391: Count Of Airplanes 题目描述 给出飞机的起飞和降落时间的列表,用 interval 序列表示. 请计算出天上同时最多有多少架飞机? 样例 对于每架飞机的起 ...
- 写一个简易web服务器、ASP.NET核心知识(4)
前言 昨天尝试了,基于对http协议的探究,我们用控制台写了一个简单的浏览器.尽管浏览器很low,但是对于http协议有个更好的理解. 说了上面这一段,诸位猜到我要干嘛了吗?(其实不用猜哈,标题里都有 ...
- JavaScript使用数组
for循环遍历 //js的数组里可以存各种类型 var arr =[1,5,true,false,'小明']; //遍历 for(var i=0;i<arr.length;i++){ alert ...
- Metasploit 使用基础
本文将简单介绍一下Kali2 上Metasploit的一些基本使用,包括启动.更新及一个小问题"Module database cache not built yet, using slow ...
- 分享6款国内、外开源PHP轻论坛CMS程序
第一.Startbbs Startbbs,一款国产个人兴趣分享的轻论坛程序,采用PHP+MYSQL架构,目前版本是V1.1.5,之前我也 有搭建使用过功能还是比较简单的,默认风格比较让普通用户接受,这 ...
- html中去掉文本框(input type="text")的边框或只显示下边框
去掉: <input type="text" name="textfield" style="border:0px;"&g ...
- 2017 CERC
2017 CERC Problem A:Assignment Algorithm 题目描述:按照规则安排在飞机上的座位. solution 模拟. 时间复杂度:\(O(nm)\) Problem B: ...
- 设计模式之笔记--解释器模式(Interpreter)
解释器模式(Interpreter) 定义 解释器模式(Interpreter),给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 类图 描述 Expr ...
- python安装模块的时候报错error: command 'gcc' failed with exit status 1
[情况] 在写Python代码的时候,需要用到psutil模块,需要安装. 但是在安装时,报错:error: command 'gcc' failed with exit status 1 [解决步骤 ...
- Maven整合Spring与Solr
首先,在maven的pom.xml文件中配置对spring和solrj客户端的依赖: <project xmlns="http://maven.apache.org/POM/4.0.0 ...