CF986B Petr and Permutations [逆序对]
Petr and Permutations
格式难调,题面就不放了。
分析:
胡乱分析+猜测SP性质一波。然后被学长告知:“1~n的排列交换次数与逆序对的奇偶性相同。”然后就愉快地A了。
因为$3n$和$7n+1$的奇偶性是一定不同的,那么就求逆序对的奇偶性然后判断即可。(太久没打逆序对了,都不会打了。。一开始还打错了。。)
Code:
//It is made by HolseLee on 26th July 2018
//CF986B
#include<bits/stdc++.h>
using namespace std; const int N=1e6+;
int n,a[N],c[N],ans; inline int lowbit(int x)
{
return x&-x;
} inline void insert(int x,int y)
{
for(;x<=n;x+=lowbit(x))c[x]+=y;
} inline int quary(int x)
{
int ret=;
for(;x>;x-=lowbit(x))ret+=c[x];
return ret;
} int main()
{
ios::sync_with_stdio(false);
cin>>n;
for(int i=;i<=n;i++){
cin>>a[i];
insert(a[i],);
ans+=i-quary(a[i]);
}
ans%=;
if(!(n%))cout<<(ans?"Um_nik":"Petr")<<"\n";
else cout<<(ans?"Petr":"Um_nik")<<"\n";
return ;
}
CF986B Petr and Permutations [逆序对]的更多相关文章
- CF986B Petr and Permutations
题意翻译 Petr要打乱排列.他首先有一个从 111 到 nnn 的顺序排列,然后进行 3n3n3n 次操作,每次选两个数并交换它们. Alex也要打乱排列.他与Petr唯一的不同是他进行 7n+17 ...
- CF986B Petr and Permutations 思维
每次交换:逆序对的数量+1或者-1: 假设最后逆序对数量为 sum; ①x+y=3n; ②x-y=sum; -> 3n+sum为偶数: 所以 n 和 sum 必须奇偶一样: #include&l ...
- Petr and Permutations CodeForces - 987E(逆序对)
题意: 给出一个长度为n的序列,求出是谁操作的(原序列为从小到大的序列),Peter的操作次数为3n,Alex的操作次数为7n+1 解析: 我们来看这个序列中的逆序对,逆序对的个数为偶数则操作次数为偶 ...
- CodeForces - 987E Petr and Permutations (思维+逆序对)
题意:初始有一个序列[1,2,...N],一次操作可以将任意两个位置的值互换,Petr做3*n次操作:Alxe做7*n+1次操作.给出最后生成的新序列,问是由谁操作得到的. 分析:一个序列的状态可以归 ...
- Codeforces 987 K预处理BFS 3n,7n+1随机结论题/不动点逆序对 X&Y=0连边DFS求连通块数目
A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...
- CF785CAnton and Permutation(分块 动态逆序对)
Anton likes permutations, especially he likes to permute their elements. Note that a permutation of ...
- 【Codeforces 986B】Petr and Permutations
[链接] 我是链接,点我呀:) [题意] 题意 [题解] n为奇数时3n和7n+1奇偶性不同 n为偶数时也是如此 然后交换任意一对数 逆序对的对数的奇偶性会发生改变一次 求出逆序对 对n讨论得出答案. ...
- 【CQOI2011】动态逆序对 BZOJ3295
Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...
- CH Round #72 奇数码问题[逆序对 观察]
描述 你一定玩过八数码游戏,它实际上是在一个3*3的网格中进行的,1个空格和1~8这8个数字恰好不重不漏地分布在这3*3的网格中. 例如:5 2 81 3 _4 6 7 在游戏过程中,可以把空格与其上 ...
随机推荐
- spoj 1825 Free tour II
http://www.spoj.com/problems/FTOUR2/ After the success of 2nd anniversary (take a look at problem FT ...
- 分享一个彻底冻结对象的函数——来自阮一峰老师的《ECMAScript 6 入门》
var constantize = (obj) => { Object.freeze(obj); Object.keys(obj).forEach( (key, i) => { if ( ...
- phpcms添加子栏目后的读取
一个栏目下面如果没有子栏目,那么它调用的模板就是列表页模板(及list_为前缀的模板):如果一个栏目下面有子栏目,那么它调用的就是栏目首页模板(category_为前缀的模板). 所以,当你这个栏目添 ...
- 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)
题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...
- NYOJ 2 括号配对问题 (模拟)
题目链接 描述 现在,有一行括号序列,请你检查这行括号是否配对. 输入 第一行输入一个数N(0<N<=100),表示有N组测试数据.后面的N行输入多组输入数据,每组输入数据都是一个字符串S ...
- hdu 3729 I'm Telling the Truth(二分匹配_ 匈牙利算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3729 I'm Telling the Truth Time Limit: 2000/1000 MS ( ...
- PHP动态修改配置文件——php经典实例
文件结构: index.php 主页 config 配置文件 doUpdate.php 修改功能页 index.php <html> <head> <title>修 ...
- 安装JDK环境变量的配置
设置环境变量 在java中需要设置三个环境变量(1.5之后不用再设置classpath了,但是个人强烈建议继续设置以保证向下兼容问题) JDK安装完成之后我们用来设置环境变量:右击”我的电脑“,选择” ...
- elasticsearch集群介绍及优化【转】
elasticsearch用于构建高可用和可扩展的系统.扩展的方式可以是购买更好的服务器(纵向扩展)或者购买更多的服务器(横向扩展),Elasticsearch能从更强大的硬件中获得更好的性能,但是纵 ...
- 离线下载pip包进行安装【转】
Host-A 不能上网,但是需要在上面安装Python-package 通过另外一台能上网的Host-B主机 1. 下载需要离线安装的Packages 在Host-B上执行如下命令: 安装单个Pack ...