Magic Grid

Time Limit:336MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Description

Thanks a lot for helping Harry Potter in finding the Sorcerer's Stone of Immortality in October. Did we not tell you that it was just an online game ? uhhh! now here is the real onsite task for Harry. You are given a magrid S ( a magic grid ) having R rows and C columns. Each cell in this magrid has either a Hungarian horntail dragon that our intrepid hero has to defeat, or a flask of magic potion that his teacher Snape has left for him. A dragon at a cell (i,j) takes away |S[i][j]| strength points from him, and a potion at a cell (i,j) increases Harry's strength by S[i][j]. If his strength drops to 0 or less at any point during his journey, Harry dies, and no magical stone can revive him.

Harry starts from the top-left corner cell (1,1) and the Sorcerer's Stone is in the bottom-right corner cell (R,C). From a cell (i,j), Harry can only move either one cell down or right i.e., to cell (i+1,j) or cell (i,j+1) and he can not move outside the magrid. Harry has used magic before starting his journey to determine which cell contains what, but lacks the basic simple mathematical skill to determine what minimum strength he needs to start with to collect the Sorcerer's Stone. Please help him once again.

 

Input (STDIN):

The first line contains the number of test cases T. T cases follow. Each test case consists of R C in the first line followed by the description of the grid in R lines, each containing C integers. Rows are numbered 1 to R from top to bottom and columns are numbered 1 to C from left to right. Cells with S[i][j] < 0 contain dragons, others contain magic potions.

Output (STDOUT):

Output T lines, one for each case containing the minimum strength Harry should start with from the cell (1,1) to have a positive strength through out his journey to the cell (R,C).

Constraints:

1 ≤ T ≤ 5

2 ≤ R, C ≤ 500

-10^3 ≤ S[i][j] ≤ 10^3

S[1][1] = S[R][C] = 0

Sample Input:

3

2 3

0 1 -3

1 -2 0

2 2

0 1

2 0

3 4

0 -2 -3 1

-1 4 0 -2

1 -2 -3 0

Sample Output 

2

1

2

Explanation:

 

Case 1 : If Harry starts with strength = 1 at cell (1,1), he cannot maintain a positive strength in any possible path. He needs at least strength = 2 initially.

Case 2 : Note that to start from (1,1) he needs at least strength = 1.

题解:

  1. 首先在任何位置剩下的体力至少为1,而且只能向下或者是向右,那么很容易想到动态规划,用m记录当前地图上将消耗或是增加的体力,然后从最后一个位置往前,每个位置计算出当前位置需要的最少的体力。最后计算到第一个位置即可。

  2. 利用递推式  d[i][j]= max(1,min(d[i+1][j]-m[i][j],d[i][j+1]-m[i][j])); 最后面一列和最下面的一行先计算。

以下是代码:

#include <cstdio>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std; #define ss(x) scanf("%d",&x)
#define ff(i,s,e) for(int i=s;i<e;i++)
#define fe(i,s,e) for(int i=s;i<=e;i++)
#define print(x) printf("%d\n",x);
#define write() freopen("1.in","r",stdin); const int N =510;
int m[N][N];
int d[N][N];
int r,c;
void input(){
ss(r);ss(c);
fe(i,1,r)
fe(j,1,c)
ss(m[i][j]);
}
void dp(){
d[r][c]=1;
for(int i=r-1;i>=1;i--)//先计算最右边一列
d[i][c] = max(1,d[i+1][c]-m[i][c]);
for(int i=c-1;i>=1;i--)//先计算最下面一行
d[r][i]= max(1,d[r][i+1]-m[r][i]);
for(int i=r-1;i>=1;i--)
for(int j=c-1;j>=1;j--)//遍历计算其他所有的
d[i][j]= max(1,min(d[i+1][j]-m[i][j],d[i][j+1]-m[i][j]));
}
int main(){
//write();
int T;
ss(T);
while(T--){
input();
dp();
print(d[1][1]);//输出第一个即可;
}
}

  

Spring-2-A Magic Grid(SPOJ AMR11A)解题报告及测试数据的更多相关文章

  1. Spring-2-J Goblin Wars(SPOJ AMR11J)解题报告及测试数据

    Goblin Wars Time Limit:432MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Description Th ...

  2. Spring-2-B Save the Students(SPOJ AMR11B)解题报告及测试数据

    Save the Students Time Limit:134MS     Memory Limit:0KB     64bit IO Format:%lld & %llu   Descri ...

  3. Spring-2-H Array Diversity(SPOJ AMR11H)解题报告及测试数据

    Array Diversity Time Limit:404MS     Memory Limit:0KB     64bit IO Format:%lld & %llu   Descript ...

  4. sgu 104 Little shop of flowers 解题报告及测试数据

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB 问题: 你想要将你的 ...

  5. Spring-1-I 233 Matrix(HDU 5015)解题报告及测试数据

    233 Matrix Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Descript ...

  6. Spring-1-H Number Sequence(HDU 5014)解题报告及测试数据

    Number Sequence Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Pro ...

  7. Spring-1-F Dice(HDU 5012)解题报告及测试数据

    Dice Time Limit:1000MS     Memory Limit:65536KB Description There are 2 special dices on the table. ...

  8. Spring-1-E Game(HDU 5011)解题报告及测试数据

    Game Time Limit:1000MS     Memory Limit:65536KB Description Here is a game for two players. The rule ...

  9. Spring-1-A Post Robot(HDU 5007)解题报告及测试数据

    Post Robot Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K Problem Description ...

随机推荐

  1. MathType中有几种不同的省略号

    省略号是一个使用很广泛的符号,这个符号在很多方面都有应用,它一般表示列举的意思.文科方面的省略号跟数理中的省略号使用时有一些区别,前者是6个点,而后者只要3个点.当在用MathType数学公式编辑器时 ...

  2. VS2008链接错误fatal error LNK1104: cannot open file '*.obj'

    This particular issue is caused by specifying a dependency to a lib file that had spaces in its path ...

  3. ios开发之--NSMutableParagraphStyle与NSParagraphStyle的使用

    在ios6以后,苹果官方建议用“- (CGRect)boundingRectWithSize:(CGSize)size options:(NSStringDrawingOptions)options ...

  4. 重写equals()方法也要重写hashcode()方法

    如果我们对equals方法进行了重写,建议一定要对hashCode方法重写,以保证相同的对象返回相同的hash值,不同的对象返回不同的hash值.

  5. webpack报错no postcss config...

    终端里运行的错误: 查了好多资料,最后找到解决办法,改为: const webpack = require('webpack'); // const autoprefixer = require('a ...

  6. 动态加载script文件

    动态加载script文件:   http://www.cnblogs.com/skykang/archive/2011/07/21/2112685.html

  7. 160601、Websocet服务端实现

    今天是六一儿童节,祝愿小朋友们节日快乐!大朋友们事事顺心! Websocet服务端实现 WebSocketConfig.Java ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

  8. 160512、nginx+多个tomcat集群+session共享(windows版)

    第一步:下载nginx的windows版本,解压即可使用,点击nginx.exe启动nginx 或cmd命令 1.启动: D:\nginx+tomcat\nginx-1.9.3>start ng ...

  9. Dart异步与消息循环机制

    Dart与消息循环机制 翻译自https://www.dartlang.org/articles/event-loop/ 异步任务在Dart中随处可见,例如许多库的方法调用都会返回Future对象来实 ...

  10. debian卸载旧内核

    debian卸载旧内核要先看看有哪些旧的内核,用命令: uname -a dpkg --get-selections |grep linux 如果你的内核是以kernel开头的就把上面的linux改成 ...