Sum of Consecutive Prime Numbers
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 23931   Accepted: 13044

Description

Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime 
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. 
Your mission is to write a program that reports the number of representations for the given positive integer.

Input

The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

Output

The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

Sample Input

2
3
17
41
20
666
12
53
0

Sample Output

1
1
2
3
0
0
1
2
思路:尺取法操作连续子序列。
import java.util.Arrays;
import java.util.Scanner; public class Main {
Scanner in = new Scanner(System.in);
final int MAXN = 10005;
int[] prime = new int[MAXN];
boolean[] isPrime = new boolean[MAXN];
int[] sum = new int[MAXN];
int total;
void table() {
Arrays.fill(isPrime, true);
isPrime[0] = false;
isPrime[1] = false;
for(int i = 2; i < MAXN; i++) {
if(isPrime[i]) {
prime[total++] = i;
for(int j = i + i; j < MAXN; j += i) {
isPrime[j] = false;
}
}
}
sum[0] = 0;
for(int i = 1; i < total; i++) {
sum[i] = sum[i-1] + prime[i-1];
}
}
Main() {
int n;
table();
while((n = in.nextInt()) != 0) {
int res = 0, sum = 0;
int front = 0, rear = 0;
while(true) {
while(rear < total && prime[rear] <= n && sum < n) {
sum += prime[rear++];
}
if(sum == n) {
res++;
}
sum -= prime[front++];
if(front >= total || front > rear) {
break;
}
}
System.out.println(res);
}
}
public static void main(String[] args) { new Main();
}
}

POJ2739(尺取法)的更多相关文章

  1. poj2739尺取法+素数筛

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How man ...

  2. POJ2739 Sum of Consecutive Prime Numbers(尺取法)

    POJ2739 Sum of Consecutive Prime Numbers 题目大意:给出一个整数,如果有一段连续的素数之和等于该数,即满足要求,求出这种连续的素数的个数 水题:艾氏筛法打表+尺 ...

  3. poj2739(尺取法+质数筛)

    题意:给你一个数,问这个数能否等于一系列连续的质数的和: 解题思路:质数筛打出质数表:然后就是尺取法解决: 代码: #include<iostream> #include<algor ...

  4. POJ 尺取法

    poj3061 Subsequence 题目链接: http://poj.org/problem?id=3061 挑战P146.题意:给定长度为n的数列整数a0,a1,...,a(n-1)以及整数S, ...

  5. 5806 NanoApe Loves Sequence Ⅱ(尺取法)

    传送门 NanoApe Loves Sequence Ⅱ Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/131072 K ...

  6. POJ3061 尺取法

    题目大意:从给定序列里找出区间和大于等于S的最小区间的长度. 前阵子在zzuli OJ上见过类似的题,还好当时补题了.尺取法O(n) 的复杂度过掉的.尺取法:从头遍历,如果不满足条件,则将尺子尾 部增 ...

  7. POJ 2739 Sum of Consecutive Prime Numbers(尺取法)

    题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS     Memory Limit: 65536K Description S ...

  8. CF 701C They Are Everywhere(尺取法)

    题目链接: 传送门 They Are Everywhere time limit per test:2 second     memory limit per test:256 megabytes D ...

  9. nyoj133_子序列_离散化_尺取法

    子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:5   描述 给定一个序列,请你求出该序列的一个连续的子序列,使原串中出现的所有元素皆在该子序列中出现过至少1次. 如2 8 ...

随机推荐

  1. Gridview 尾部添加总计

    1.GridView控件showfooter的属性=true 2. int totalZJ, iZJ; protected void GridView1_RowDataBound(object sen ...

  2. Singleton单例类模式

    body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...

  3. qml 源码样例

    https://github.com/CodeBees/qtExample https://github.com/zhengtianzuo/QtQuickExamples/blob/master/RE ...

  4. 修复 海盗船 k70 lux 未检测到设备(k70 no device detected)

    corsair k70 lux 上周收到的生日礼物,头一次用机械键盘,还是这么高端的机械键盘(729RMB),手感一级棒.但是,有问题啊!把键盘上的 bios按钮拨到8上电脑可以识别,scroll 灯 ...

  5. kibana安装

    kibana,ELK中的K,主要为ES提供界面化操作,据说还是比较炫的,今天安装5.5.2版本进行尝试一把. 安装过程不难,简单的配置了一下端口和IP即可,难度不大. config下的kibana.y ...

  6. vue.js 源代码学习笔记 ----- instance inject

    /* @flow */ import { hasSymbol } from 'core/util/env' import { warn } from '../util/index' import { ...

  7. Django部署时为什么要用 uWSGI与 Nginx? 以及 WSGI,uwsgi等协议

    Django框架的服务器架构一般是 Nginx + uWSGI + Django (1)一些基本概念 1 WSGI协议,uwsgi协议 WSGI协议(通讯协议):Python用于Web开发的协议(用于 ...

  8. Android 图片压缩各种方式

       前言:由于公司项目当中需要用到压缩这块的相应技术,之前也做过的图片压缩都不是特别的理想, 所以这次花了很多心思,仔细研究和在网上找到了很多相对应的资料.为了就是 以后再做的时候直接拿来用就可以了 ...

  9. HBase架构解析

    Hbase组件  客户端Client 整个HBase集群的入口 使用HBase RPC机制与HMaster和HRegionserver通信 与HMaster通信进行管理类的操作 与HRegionse ...

  10. TF随笔-11

    #!/usr/bin/env python2 # -*- coding: utf-8 -*- import tensorflow as tf my_var=tf.Variable(0.) step=t ...