Sum of Consecutive Prime Numbers
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 23931   Accepted: 13044

Description

Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime 
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. 
Your mission is to write a program that reports the number of representations for the given positive integer.

Input

The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

Output

The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

Sample Input

2
3
17
41
20
666
12
53
0

Sample Output

1
1
2
3
0
0
1
2
思路:尺取法操作连续子序列。
import java.util.Arrays;
import java.util.Scanner; public class Main {
Scanner in = new Scanner(System.in);
final int MAXN = 10005;
int[] prime = new int[MAXN];
boolean[] isPrime = new boolean[MAXN];
int[] sum = new int[MAXN];
int total;
void table() {
Arrays.fill(isPrime, true);
isPrime[0] = false;
isPrime[1] = false;
for(int i = 2; i < MAXN; i++) {
if(isPrime[i]) {
prime[total++] = i;
for(int j = i + i; j < MAXN; j += i) {
isPrime[j] = false;
}
}
}
sum[0] = 0;
for(int i = 1; i < total; i++) {
sum[i] = sum[i-1] + prime[i-1];
}
}
Main() {
int n;
table();
while((n = in.nextInt()) != 0) {
int res = 0, sum = 0;
int front = 0, rear = 0;
while(true) {
while(rear < total && prime[rear] <= n && sum < n) {
sum += prime[rear++];
}
if(sum == n) {
res++;
}
sum -= prime[front++];
if(front >= total || front > rear) {
break;
}
}
System.out.println(res);
}
}
public static void main(String[] args) { new Main();
}
}

POJ2739(尺取法)的更多相关文章

  1. poj2739尺取法+素数筛

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How man ...

  2. POJ2739 Sum of Consecutive Prime Numbers(尺取法)

    POJ2739 Sum of Consecutive Prime Numbers 题目大意:给出一个整数,如果有一段连续的素数之和等于该数,即满足要求,求出这种连续的素数的个数 水题:艾氏筛法打表+尺 ...

  3. poj2739(尺取法+质数筛)

    题意:给你一个数,问这个数能否等于一系列连续的质数的和: 解题思路:质数筛打出质数表:然后就是尺取法解决: 代码: #include<iostream> #include<algor ...

  4. POJ 尺取法

    poj3061 Subsequence 题目链接: http://poj.org/problem?id=3061 挑战P146.题意:给定长度为n的数列整数a0,a1,...,a(n-1)以及整数S, ...

  5. 5806 NanoApe Loves Sequence Ⅱ(尺取法)

    传送门 NanoApe Loves Sequence Ⅱ Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/131072 K ...

  6. POJ3061 尺取法

    题目大意:从给定序列里找出区间和大于等于S的最小区间的长度. 前阵子在zzuli OJ上见过类似的题,还好当时补题了.尺取法O(n) 的复杂度过掉的.尺取法:从头遍历,如果不满足条件,则将尺子尾 部增 ...

  7. POJ 2739 Sum of Consecutive Prime Numbers(尺取法)

    题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS     Memory Limit: 65536K Description S ...

  8. CF 701C They Are Everywhere(尺取法)

    题目链接: 传送门 They Are Everywhere time limit per test:2 second     memory limit per test:256 megabytes D ...

  9. nyoj133_子序列_离散化_尺取法

    子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:5   描述 给定一个序列,请你求出该序列的一个连续的子序列,使原串中出现的所有元素皆在该子序列中出现过至少1次. 如2 8 ...

随机推荐

  1. 001——vue.js初始安装:

    windows下安装: 1.https://nodejs.org/en/  下载安装node.js. 在cmd窗口输入node -v检查node是否安装成功. npm也随着node安装了:npm -v ...

  2. golang简易版聊天室

    功能需求: 创建一个聊天室,实现群聊和单聊的功能,直接输入为群聊,@某人后输入为单聊 效果图: 群聊:   单聊: 服务端: package main import ( "fmt" ...

  3. linux安装mysql5.7.24

    一.卸载 mysql安装有三种方式,包括二进制包安装(Using Generic Binaries).RPM包安装.源码安装.一般是前两种比较多 卸载方法参考Linux->卸载Mysql方法总结 ...

  4. 12.18 webSocket消息推送

    ---恢复内容开始--- 准备工作: 在要跳转到的页面加入js <#--弹窗--> <div class="modal fade" id="myModa ...

  5. va_start、va_arg、va_end、va_copy 可变参函数

    1.应用与原理         在C语言中,有时我们无法给出一个函数参数的列表,比如: int printf(const char *format, ...); int fprintf(FILE *s ...

  6. 20165202 2017-2018-2 《Java程序设计》第9周学习总结

    教材学习内容总结 Ch13 URL类 URL类是java.net包中的一个重要的类,URL的实例封装着一个统一资源定位符,使用URL创建对象的应用程序称作客户端程序. 一个URL对象通常包含最基本的三 ...

  7. avr 烧录失败

    用Atmel studio 6.0 配置mkII烧录器 使用上位机bat程序烧录 提示错误:firmware is old... 1参考(关于FUSe setting) http://www.cnbl ...

  8. 报错:Type mismatch: cannot convert from Object to Car

    问题描述: 一个非常简单的spring项目,用静态工厂方法配置bean实例.项目的目录结构如下: 代码如下: Car.java package com.tt.spring.beans.factory; ...

  9. Bootstrap modal 多弹窗之叠加关闭阴影遮罩问题的解决方法

    这里也会遇到一次性关闭所有modal引起阴影遮罩的问题,也就是所有modal都关闭了,但是主页面仍然被阴影遮罩. 这个问题从哪来的,是因为modal叠加,我们点击窗口之外的空白部分,一次性关闭所有mo ...

  10. 【PL/SQL编程】循环语句

    1. loop语句 loop plsql_sentence; exit when end_condition_exp; end loop; loop语句会先执行一次循环体,然后再判断“exit whe ...