第十篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 query
/** Spark SQL源码分析系列文章*/
前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的。
那么基于以上存储结构,我们查询cache在jvm内的数据又是如何查询的,本文将揭示查询In-Memory Data的方式。
一、引子
当我们将src表cache到了内存后,再次查询src,可以通过analyzed执行计划来观察内部调用。
即parse后,会形成InMemoryRelation结点,最后执行物理计划时,会调用InMemoryColumnarTableScan这个结点的方法。
如下:
- scala> val exe = executePlan(sql("select value from src").queryExecution.analyzed)
- 14/09/26 10:30:26 INFO parse.ParseDriver: Parsing command: select value from src
- 14/09/26 10:30:26 INFO parse.ParseDriver: Parse Completed
- exe: org.apache.spark.sql.hive.test.TestHive.QueryExecution =
- == Parsed Logical Plan ==
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- == Analyzed Logical Plan ==
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- == Optimized Logical Plan ==
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- == Physical Plan ==
- InMemoryColumnarTableScan [value#5], (InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)) //查询内存中表的入口
- Code Generation: false
- == RDD ==
二、InMemoryColumnarTableScan
- private[sql] case class InMemoryColumnarTableScan(
- attributes: Seq[Attribute],
- relation: InMemoryRelation)
- extends LeafNode {
- override def output: Seq[Attribute] = attributes
- override def execute() = {
- relation.cachedColumnBuffers.mapPartitions { iterator =>
- // Find the ordinals of the requested columns. If none are requested, use the first.
- val requestedColumns = if (attributes.isEmpty) {
- Seq(0)
- } else {
- attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId)) //根据表达式exprId找出对应列的ByteBuffer的索引
- }
- iterator
- .map(batch => requestedColumns.map(batch(_)).map(ColumnAccessor(_)))//根据索引取得对应请求列的ByteBuffer,并封装为ColumnAccessor。
- .flatMap { columnAccessors =>
- val nextRow = new GenericMutableRow(columnAccessors.length) //Row的长度
- new Iterator[Row] {
- override def next() = {
- var i = 0
- while (i < nextRow.length) {
- columnAccessors(i).extractTo(nextRow, i) //根据对应index和长度,从byterbuffer里取得值,封装到row里
- i += 1
- }
- nextRow
- }
- override def hasNext = columnAccessors.head.hasNext
- }
- }
- }
- }
- }
查询请求的列,如下:
- scala> exe.optimizedPlan
- res93: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- scala> val relation = exe.optimizedPlan(1)
- relation: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- scala> val request_relation = exe.executedPlan
- request_relation: org.apache.spark.sql.execution.SparkPlan =
- InMemoryColumnarTableScan [value#5], (InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None))
- scala> request_relation.output //请求的列,我们请求的只有value列
- res95: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(value#5)
- scala> relation.output //默认保存在relation中的所有列
- res96: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(key#4, value#5)
- scala> val attributes = request_relation.output
- attributes: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(value#5)
- //根据exprId找出对应ID
- scala> val attr_index = attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId))
- attr_index: Seq[Int] = ArrayBuffer(1) //找到请求的列value的索引是1, 我们查询就从Index为1的bytebuffer中,请求数据
- scala> relation.output.foreach(e=>println(e.exprId))
- ExprId(4) //对应<span style="font-family: Arial, Helvetica, sans-serif;">[key#4,value#5]</span>
- ExprId(5)
- scala> request_relation.output.foreach(e=>println(e.exprId))
- ExprId(5)
三、ColumnAccessor
ColumnAccessor对应每一种类型,类图如下:
最后返回一个新的迭代器:
- new Iterator[Row] {
- override def next() = {
- var i = 0
- while (i < nextRow.length) { //请求列的长度
- columnAccessors(i).extractTo(nextRow, i)//调用columnType.setField(row, ordinal, extractSingle(buffer))解析buffer
- i += 1
- }
- nextRow//返回解析后的row
- }
- override def hasNext = columnAccessors.head.hasNext
- }
四、总结
Spark SQL In-Memory Columnar Storage的查询相对来说还是比较简单的,其查询思想主要和存储的数据结构有关。
即存储时,按每列放到一个bytebuffer,形成一个bytebuffer数组。
查询时,根据请求列的exprId查找到上述数组的索引,然后使用ColumnAccessor对buffer中字段进行解析,最后封装为Row对象,返回。
——EOF——
创文章,转载请注明:
转载自:OopsOutOfMemory盛利的Blog,作者: OopsOutOfMemory
本文链接地址:http://blog.csdn.net/oopsoom/article/details/39577419
注:本文基于署名-非商业性使用-禁止演绎 2.5 中国大陆(CC BY-NC-ND 2.5 CN)协议,欢迎转载、转发和评论,但是请保留本文作者署名和文章链接。如若需要用于商业目的或者与授权方面的协商,请联系我。

转自:http://blog.csdn.net/oopsoom/article/details/39577419
第十篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 query的更多相关文章
- 第九篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 cache table
/** Spark SQL源码分析系列文章*/ Spark SQL 可以将数据缓存到内存中,我们可以见到的通过调用cache table tableName即可将一张表缓存到内存中,来极大的提高查询效 ...
- Spark学习之路(十)—— Spark SQL 外部数据源
一.简介 1.1 多数据源支持 Spark支持以下六个核心数据源,同时Spark社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景. CSV JSON Parquet ORC JDBC/ ...
- Spark 系列(十)—— Spark SQL 外部数据源
一.简介 1.1 多数据源支持 Spark 支持以下六个核心数据源,同时 Spark 社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景. CSV JSON Parquet ORC JD ...
- Tachyon在Spark中的作用(Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks 论文阅读翻译)
摘要: Tachyon是一种分布式文件系统,能够借助集群计算框架使得数据以内存的速度进行共享.当今的缓存技术优化了read过程,可是,write过程由于须要容错机制,就须要通过网络或者 ...
- 【Spark SQL 源码分析系列文章】
从决定写Spark SQL源码分析的文章,到现在一个月的时间里,陆陆续续差不多快完成了,这里也做一个整合和索引,方便大家阅读,这里给出阅读顺序 :) 第一篇 Spark SQL源码分析之核心流程 第二 ...
- Spark SQL 源代码分析系列
从决定写Spark SQL文章的源代码分析,到现在一个月的时间,一个又一个几乎相同的结束很快,在这里也做了一个综合指数,方便阅读,下面是读取顺序 :) 第一章 Spark SQL源代码分析之核心流程 ...
- 【慕课网实战】八、以慕课网日志分析为例 进入大数据 Spark SQL 的世界
用户行为日志:用户每次访问网站时所有的行为数据(访问.浏览.搜索.点击...) 用户行为轨迹.流量日志 日志数据内容: 1)访问的系统属性: 操作系统.浏览器等等 2)访问特征:点击的ur ...
- Spark官方1 ---------Spark SQL和DataFrame指南(1.5.0)
概述 Spark SQL是用于结构化数据处理的Spark模块.它提供了一个称为DataFrames的编程抽象,也可以作为分布式SQL查询引擎. Spark SQL也可用于从现有的Hive安装中读取数据 ...
- Spark SQL with Hive
前一篇文章是Spark SQL的入门篇Spark SQL初探,介绍了一些基础知识和API,可是离我们的日常使用还似乎差了一步之遥. 终结Shark的利用有2个: 1.和Spark程序的集成有诸多限制 ...
随机推荐
- 01. Java序列化与反序列化简介
Java对象的序列化与反序列化 ; 给大家讲解一下什么是序列化 & 反序列化 当两个进程进行远程通讯的时候,彼此相互可以发送各种类型的数据,如文本,图片,语音和视频等无论是任何类型,最终都会 ...
- 素数筛法—时间复杂度O(n)
请你想出一个算法求出n以内(含n)的所有素数,要求算法的时间复杂度越小越好. 这里介绍一种算法——快速线性素数筛法(欧拉筛法),时间复杂度O(n). 诀窍在于:筛除合数时,保证每个合数只会被它的最小质 ...
- King's Game---hdu5643(约瑟夫环)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5643 约瑟夫环问题的原来描述为,设有编号为1,2,……,n的n(n>0)个人围成一个圈,从 ...
- Python作用域-->闭包函数-->装饰器
1.作用域: 在python中,作用域分为两种:全局作用域和局部作用域. 全局作用域是定义在文件级别的变量,函数名.而局部作用域,则是定义函数内部. 关于作用域,我要理解两点:a.在全局不能访问到局部 ...
- Django中间件如何处理请求
Django中间件 在http请求 到达视图函数之前 和视图函数return之后,django会根据自己的规则在合适的时机执行中间件中相应的方法. Django1.9版本以后中间件的执行流程 1. ...
- oracle入门(7)——存储过程
[本文介绍] 熟悉了PL/SQL语法后,实现java调用oracle存储过程才是主要目的.本文将介绍如何写存储过程,java如何调用存储过程. [存储过程介绍] 抛开专业的描述,存储过程就是在数据库里 ...
- (0.2.1)mysql数据库环境-操作系统配置
目录 1.基于Linux平台的Mysql项目场景介绍 2.mysql数据库运行环境准备-最优配置 2.1.如何查看官方文档了解环境要求 2.2.安装虚拟机环境与操作系统 2.3.操作系统最优配置9大步 ...
- 数据分析之可反复与独立样本的T-Test分析
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/jia20003/article/details/24201297 数据分析之独立样本的T-Test分 ...
- MySQL 最基本的SQL语法/语句
DDL—数据定义语言(Create,Alter,Drop,DECLARE) DML—数据操纵语言(Select,Delete,Update,Insert) DCL—数据控制语言(GRANT,REVOK ...
- PHP 基础篇 - PHP 中 DES 加解密详解
一.简介 DES 是对称性加密里面常见一种,全称为 Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法.密钥长度是64位(bit),超过位数密钥被忽略.所谓对 ...