HBase之八--(3):Hbase 布隆过滤器BloomFilter介绍
布隆过滤器( Bloom filters)
数据块索引提供了一个有效的方法,在访问一个特定的行时用来查找应该读取的HFile的数据块。但是它的效用是有限的。HFile数据块的默认大小是64KB,这个大小不能调整太多。
如果你要查找一个短行,只在整个数据块的起始行键上建立索引无法给你细粒度的索引信息。例如,如果你的行占用100字节存储空间,一个64KB的数据块包含(64 * 1024)/100 = 655.53 = ~700行,而你只能把起始行放在索引位上。你要查找的行可能落在特定数据块上的行区间里,但也不是肯定存放在那个数据块上。这有多种情况的可能,或者该行在表里不存在,或者存放在另一个HFile里,甚至在MemStore里。这些情况下,从硬盘读取数据块会带来IO开销,也会滥用数据块缓存。这会影响性能,尤其是当你面对一个巨大的数据集并且有很多并发读用户时。
布隆过滤器允许你对存储在每个数据块的数据做一个反向测试。当某行被请求时,先检查布隆过滤器看看该行是否不在这个数据块。布隆过滤器要么确定回答该行不在,要么回答它不知道。这就是为什么我们称它是反向测试。布隆过滤器也可以应用到行里的单元上。当访问某列标识符时先使用同样的反向测试。
布隆过滤器也不是没有代价。存储这个额外的索引层次占用额外的空间。布隆过滤器随着它们的索引对象数据增长而增长,所以行级布隆过滤器比列标识符级布隆过滤器占用空间要少。当空间不是问题时,它们可以帮助你榨干系统的性能潜力。
你可以在列族上打开布隆过滤器,如下所示:
hbase(main)> create 'mytable',{NAME=>'colfam1',BLOOMFILTER=>'ROWCOL'}
BLOOMFILTER参数的默认值是NONE。一个行级布隆过滤器用ROW打开,列标识符级布隆过滤器用ROWCOL打开。行级布隆过滤器在数据块里检查特定行键是否不存在,列标识符级布隆过滤器检查行和列标识符联合体是否不存在。ROWCOL布隆过滤器的开销高于ROW布隆过滤器。

- if (memOnly == false
- && ((StoreFileScanner) kvs).shouldSeek(scan, columns)) {
- scanners.add(kvs);
- }
- if (!scan.isGetScan()) {
- return true;
- }
- byte[] row = scan.getStartRow();
- switch (this.bloomFilterType) {
- case ROW:
- return passesBloomFilter(row, 0, row.length, null, 0, 0);
- case ROWCOL:
- if (columns != null && columns.size() == 1) {
- byte[] column = columns.first();
- return passesBloomFilter(row, 0, row.length, column, 0, column.length);
- }
- // For multi-column queries the Bloom filter is checked from the
- // seekExact operation.
- return true;
- default:
- return true;
- }
- // Seek all scanners to the start of the Row (or if the exact matching row
- // key does not exist, then to the start of the next matching Row).
- if (matcher.isExactColumnQuery()) {
- for (KeyValueScanner scanner : scanners)
- scanner.seekExactly(matcher.getStartKey(), false);
- } else {
- for (KeyValueScanner scanner : scanners)
- scanner.seek(matcher.getStartKey());
- }
- public boolean seekExactly(KeyValue kv, boolean forward)
- throws IOException {
- if (reader.getBloomFilterType() != StoreFile.BloomType.ROWCOL ||
- kv.getRowLength() == 0 || kv.getQualifierLength() == 0) {
- return forward ? reseek(kv) : seek(kv);
- }
- boolean isInBloom = reader.passesBloomFilter(kv.getBuffer(),
- kv.getRowOffset(), kv.getRowLength(), kv.getBuffer(),
- kv.getQualifierOffset(), kv.getQualifierLength());
- if (isInBloom) {
- // This row/column might be in this store file. Do a normal seek.
- return forward ? reseek(kv) : seek(kv);
- }
- // Create a fake key/value, so that this scanner only bubbles up to the top
- // of the KeyValueHeap in StoreScanner after we scanned this row/column in
- // all other store files. The query matcher will then just skip this fake
- // key/value and the store scanner will progress to the next column.
- cur = kv.createLastOnRowCol();
- return true;
- }
HBase之八--(3):Hbase 布隆过滤器BloomFilter介绍的更多相关文章
- Hbase 布隆过滤器BloomFilter介绍
转载自:http://blog.csdn.net/opensure/article/details/46453681 1.主要功能 提高随机读的性能 2.存储开销 bloom filter的数据存在S ...
- Spark布隆过滤器(bloomFilter)
数据过滤在很多场景都会应用到,特别是在大数据环境下.在数据量很大的场景实现过滤或者全局去重,需要存储的数据量和计算代价是非常庞大的.很多小伙伴第一念头肯定会想到布隆过滤器,有一定的精度损失,但是存储性 ...
- 布隆过滤器(BloomFilter)持久化
摘要 Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式程序的统一去重.我们可以将数据进行持久化,这样就克服了down机的问题,常见的持久化方法包 ...
- 白话布隆过滤器BloomFilter
通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下 ...
- 【浅析】|白话布隆过滤器BloomFilter
通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下 ...
- 海量数据处理之布隆过滤器BloomFilter算法
Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合.使用场景:数据量为100亿 ...
- 一道腾讯面试题:如何快速判断某 URL 是否在 20 亿的网址 URL 集合中?布隆过滤器
何为布隆过滤器 还是以上面的例子为例: 判断逻辑: 多次哈希: Guava的BloomFilter 创建BloomFilter 最终还是调用: 使用: 算法特点 使用场景 假设遇到这样一个问题:一个网 ...
- python实现布隆过滤器及原理解析
python实现布隆过滤器及原理解析 布隆过滤器( BloomFilter )是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地 ...
- Redis实现布隆过滤器解析
布隆过滤器原理介绍 [1]概念说明 1)布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合 ...
随机推荐
- ES常见名词定义
集群:具有相同clusterName的节点.节点:一个ES实例,并不定是一个节点,因为一个节点上可以启动多个ES实例.索引:相当于数据库database的概念,一个集群可以包含多个索引.分片:索引可以 ...
- ASP.NET MVC3关于生成纯静态后如何不再走路由直接访问静态页面--收藏没测
要解决这个问题,我们需要先了解ASP.NET应用程序的生命周期,先看下面作者整理的一张图片: 从图中我们可以清楚的看到:通用IIS访问应用程序时,每次的单个页面URL访问时,都会先经过HttpAppl ...
- jq的.off解绑事件
.off( events [, selector ] [, handler ] ) 描述:移除一个事件处理函数 events 类型: String 一个或多个空格分隔的事件类型和可选的命名空间,或仅仅 ...
- azure最佳实践系列1-自我修复的设计
如何设计你的应用,能够在系统错误时做到自我修复?在分布式系统中,会经常遇到错误.硬件也会遇到异常情况.网络有时会出现短暂的错误.整个地区出现了服务中断.即便如此,关于这些问题的方案也是要提前规划的.因 ...
- [置顶]
记最近一次Nodejs全栈开发经历
背景: 前段时间大部门下新成立了一个推广百度OCR.文字识别.图像识别等科技能力在金融领域应用的子部门.因为部门刚成立,基础设施和人力都是欠缺的.当时分到我们部门的任务是抽调一个人做新部门主站前端开发 ...
- 服务器重装和配置:Ubuntu16.04 + Anaconda3 + GTX1080驱动 + CUDA8 + cuDNN + 常用工具安装
前一篇[基于Ubuntu16.04的GeForce GTX 1080驱动安装,遇到的问题及对应的解决方法]是在机器原有系统上安装GPU驱动,后来决定备份数据后重装系统,让服务器环境更干净清爽. 1.安 ...
- [Linux] 输出文件的指定行
1.获取第k行(以k=10为例) 要注意的是,如果文件包含内容不足10行,应该不输出. # Read from the file file.txt and output the tenth line ...
- HDU 2273
http://acm.hdu.edu.cn/showproblem.php?pid=2273 N辆车排队过马路,不能相撞,问最短时间 ans=车的总长度/最小速度 #include <iostr ...
- python中类变量,成员变量
参考文献:http://www.jb51.net/article/54286.htm 转载.引用请附上参考文献的链接. (1)位置的区别 先看看下面这段代码: class TestClass(obje ...
- vuex(二)getters
getters: 有时候,我们需要对state的数据进行筛选,过滤.这些操作都是在组件的计算属性进行的.如果多个组件需要用到筛选后的数据,那我们就必须到处重复写该计算属性函数:或者将其提取到一个公共的 ...