题意:在一条布满地雷的路上,你现在的起点在1处。在N个点处布有地雷,1<=N<=10。地雷点的坐标范围:[1,100000000].
每次前进p的概率前进一步,1-p的概率前进1-p步。问顺利通过这条路的概率。就是不要走到有地雷的地方。
链接:点我
 
设dp[i]表示到达i点的概率,则 初始值 dp[1]=1.
很容易想到转移方程: dp[i]=p*dp[i-1]+(1-p)*dp[i-2];
但是由于坐标的范围很大,直接这样求是不行的,而且当中的某些点还存在地雷。
 
 
N个有地雷的点的坐标为 x[1],x[2],x[3]```````x[N].
我们把道路分成N段:
1~x[1];
x[1]+1~x[2];
x[2]+1~x[3];
`
 
x[N-1]+1~x[N].
 
转移矩阵:
  dp[i]    | p ,1-p  |    dp[i-1]
            =|            |*
dp[i-1]   | 1 , 0    |   dp[i-2]
 
这样每一段只有一个地雷。我们只要求得通过每一段的概率。乘法原理相乘就是答案。
对于每一段,通过该段的概率等于1-踩到该段终点的地雷的概率。
 
就比如第一段 1~x[1].  通过该段其实就相当于是到达x[1]+1点。那么p[x[1]+1]=1-p[x[1]].
但是这个前提是p[1]=1,即起点的概率等于1.对于后面的段我们也是一样的假设,这样就乘起来就是答案了。
 
对于每一段的概率的求法可以通过矩阵乘法快速求出来。
 
 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
using namespace std;
#define MOD 1000000007
const int INF=0x3f3f3f3f;
const double eps=1e-;
typedef long long ll;
#define cl(a) memset(a,0,sizeof(a))
#define ts printf("*****\n");
const int MAXN=;
int n,m,tt,x[MAXN],dp[MAXN];
struct Matrix
{
double mat[][];
};
Matrix mul(Matrix a,Matrix b)
{
Matrix ret;
for(int i=;i<;i++)
for(int j=;j<;j++)
{
ret.mat[i][j]=;
for(int k=;k<;k++)
ret.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
}
return ret;
}
Matrix pow_M(Matrix a,int n)
{
Matrix ret;
memset(ret.mat,,sizeof(ret.mat));
for(int i=;i<;i++)ret.mat[i][i]=;
Matrix temp=a;
while(n)
{
if(n&)ret=mul(ret,temp);
temp=mul(temp,temp);
n>>=;
}
return ret;
}
int main()
{
int i,j,k;
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
double p;
while(scanf("%d%lf",&n,&p)!=EOF)
{
double ans=;
for(i=;i<n;i++) scanf("%d",x+i);
sort(x,x+n);
Matrix a,b;
a.mat[][]=p;
a.mat[][]=-p;
a.mat[][]=;
a.mat[][]=;
b=pow_M(a,x[]-);
ans*=(-b.mat[][]);
for(i=;i<n;i++)
{
if(x[i]==x[i-]) continue;
b=pow_M(a,x[i]-x[i-]-);
ans*=(-b.mat[][]);
}
printf("%.7f\n",ans);
}
}

poj 3744 概率dp+矩阵快速幂的更多相关文章

  1. Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)

    题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...

  2. POJ 3744 Scout YYF I 概率dp+矩阵快速幂

    题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...

  3. poj3744 (概率DP+矩阵快速幂)

    http://poj.org/problem?id=3744 题意:在一条铺满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,10000000 ...

  4. poj4474 Scout YYF I(概率dp+矩阵快速幂)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4100   Accepted: 1051 Descr ...

  5. POJ3744 Scout YYF I 概率DP+矩阵快速幂

    http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...

  6. POJ 3744 Scout YYF I (概率dp+矩阵快速幂)

    题意: 一条路上,给出n地雷的位置,人起始位置在1,向前走一步的概率p,走两步的概率1-p,踩到地雷就死了,求安全通过这条路的概率. 分析: 如果不考虑地雷的情况,dp[i],表示到达i位置的概率,d ...

  7. poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)

    F - Scout YYF I Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  8. bnuoj 34985 Elegant String DP+矩阵快速幂

    题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...

  9. poj 3070 && nyoj 148 矩阵快速幂

    poj 3070 && nyoj 148 矩阵快速幂 题目链接 poj: http://poj.org/problem?id=3070 nyoj: http://acm.nyist.n ...

随机推荐

  1. css各种姿势的水平居中

    首先是最常用的,利用margin属性的auto来进行水平居中 margin: 0 auto; 其中0是指上下的margin,auto是左右的margin,margin这个属性的简写是按顺时针走的,也就 ...

  2. 从python入门ruby

    1.Ruby的函数可以不使用括号 def h(name) puts "hello #{name}" end h "jack" 2.python可以直接访问实例的 ...

  3. Vue笔记之模板语法

    插值 比较常用的就是插值,插值就是{{ foobar }}用两个大括号包起来的一个变量,显示的时候会将双大括号标签替换为这个变量的值. 基本的用法就是: <p>{{ message }}& ...

  4. CSS实现箭头效果

    有时候网页中使用箭头以增强效果,一般的做法是使用图片,今天我们使用CSSCSS来实现“箭头效果”,使用CSS我们必须兼容所有浏览器(IE6.7.8.9.10.+),Chrome,Firefox,Ope ...

  5. win8扁平风格的物流公司网站后台管理模板——后台

    链接:http://pan.baidu.com/s/1o79Zp2M 密码:tqrz

  6. 9 - Python函数定义-位置参数-返回值

    目录 1 函数介绍 1.1 为什么要使用函数 1.2 Python中的函数 2 函数的基本使用 3 函数的参数 3.1 参数的默认值 3.2 可变参数 3.2.1 可变位置传参 3.2.2 可变关键字 ...

  7. git服务器的简单搭建

    安装git 安装git,参考:https://git-scm.com/book/zh/v1/%E8%B5%B7%E6%AD%A5-%E5%AE%89%E8%A3%85-Git 创建git仓库 使用ro ...

  8. 前端nginx时,让后端tomcat记录真实IP【转】

    对于nginx+tomcat这种架构,如果后端tomcat配置保持默认,那么tomcat的访问日志里,记录的就是前端nginx的IP地址,而不是真实的访问IP.因此,需要对nginx.tomcat做如 ...

  9. Python递归 — — 二分查找、斐波那契数列、三级菜单

    一.二分查找 二分查找也称之为折半查找,二分查找要求线性表(存储结构)必须采用顺序存储结构,而且表中元素顺序排列. 二分查找: 1.首先,将表中间位置的元素与被查找元素比较,如果两者相等,查找结束,否 ...

  10. django入门--django-blog-zinnia搭建个人博客

    1.安装python 选择合适python2.7及以上版本安装https://www.python.org/downloads/ 2.建立虚拟环境 这不是必须的,但是建议使用,为每个项目单独引入依赖, ...