3625: [Codeforces Round #250]小朋友和二叉树

Time Limit: 40 Sec  Memory Limit: 256 MB
Submit: 650  Solved: 283
[Submit][Status][Discuss]

Description

我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树。
考虑一个含有n个互异正整数的序列c[1],c[2],...,c[n]。如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合{c[1],c[2],...,c[n]}中,我们的小朋友就会将其称作神犇的。并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和。
给出一个整数m,你能对于任意的s(1<=s<=m)计算出权值为s的神犇二叉树的个数吗?请参照样例以更好的理解什么样的两棵二叉树会被视为不同的。
我们只需要知道答案关于998244353(7*17*2^23+1,一个质数)取模后的值。

Input

第一行有2个整数 n,m(1<=n<=10^5; 1<=m<=10^5)。
第二行有n个用空格隔开的互异的整数 c[1],c[2],...,c[n](1<=c[i]<=10^5)。

Output

输出m行,每行有一个整数。第i行应当含有权值恰为i的神犇二叉树的总数。请输出答案关于998244353(=7*17*2^23+1,一个质数)取模后的结果。

Sample Input

样例一:
2 3
1 2
样例二:
3 10
9 4 3
样例三:
5 10
13 10 6 4 15

Sample Output

样例一:
1
3
9
样例二:
0
0
1
1
0
2
4
2
6
15
样例三:
0
0
0
1
0
1
0
2
0
5

HINT

对于第一个样例,有9个权值恰好为3的神犇二叉树:

Source

https://www.cnblogs.com/neighthorn/p/6497364.html

利用了二叉树的递归定义,注意空树情况要加一,因为生成函数的$x^0$为$0$,也就是默认了根节点必须有数。

剩下的就是多项式开根和逆元了。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=(<<)+,P=,g=,inv2=(P+)/;
int n,x,m,c[N],a[N],f[N],t[N],ib[N],rev[N]; int ksm(ll a,int b){
ll res;
for (res=; b; a=(a*a)%P,b>>=)
if (b & ) res=res*a%P;
return res;
} void DFT(int a[],int n,int f){
rep(i,,n-) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=; i<n; i<<=){
ll wn=ksm(g,(f==) ? (P-)/(i<<) : (P-)-(P-)/(i<<));
for (int j=,p=i<<; j<n; j+=p){
ll w=;
for (int k=; k<i; k++,w=1ll*w*wn%P){
int x=a[j+k],y=1ll*w*a[i+j+k]%P;
a[j+k]=(x+y)%P; a[i+j+k]=(x-y+P)%P;
}
}
}
if (f==-){
int inv=ksm(n,P-);
rep(i,,n-) a[i]=1ll*a[i]*inv%P;
}
} void inverse(int a[],int b[],int l){
if (l==){ b[]=ksm(a[],P-); return; }
inverse(a,b,l>>);
int n=,L=; while (n<(l<<))n<<=,L++;
rep(i,,n-) rev[i]=(rev[i>>]>>)|((i&)<<(L-));
rep(i,,l-) t[i]=a[i];
rep(i,l,n-) t[i]=;
DFT(t,n,); DFT(b,n,);
rep(i,,n-) b[i]=1ll*b[i]*(-1ll*t[i]*b[i]%P+P)%P;
DFT(b,n,-);
rep(i,l,n-) b[i]=;
} void Sqrt(int a[],int b[],int l){
if (l==) { b[]=; return; }
Sqrt(a,b,l>>);
int n=,L=; while (n<(l<<)) n<<=,L++;
rep(i,,n-) ib[i]=;
inverse(b,ib,l);
rep(i,,n-) rev[i]=(rev[i>>]>>)|((i&)<<(L-));
rep(i,,l-) t[i]=a[i];
rep(i,l,n-) t[i]=;
DFT(t,n,); DFT(b,n,); DFT(ib,n,);
rep(i,,n-) b[i]=1ll*inv2*(b[i]+1ll*t[i]*ib[i]%P)%P;
DFT(b,n,-);
rep(i,l,n-) b[i]=;
} int main(){
freopen("bzoj3625.in","r",stdin);
freopen("bzoj3625.out","w",stdout);
scanf("%d%d",&n,&m); c[]=;
rep(i,,n) scanf("%d",&x),c[x]-=;
rep(i,,m) if (c[i]<) c[i]+=P;
int len=; while (len<=m) len<<=;
Sqrt(c,a,len);
a[]++; if (a[]>=P) a[]-=P;
inverse(a,f,len);
rep(i,,m) printf("%d\n",f[i]*%P);
return ;
}

[bzoj3625][Codeforces 250 E]The Child and Binary Tree(生成函数+多项式运算+FFT)的更多相关文章

  1. 【CF438E】The Child and Binary Tree(多项式运算,生成函数)

    [CF438E]The Child and Binary Tree(多项式运算,生成函数) 题面 有一个大小为\(n\)的集合\(S\) 问所有点权都在集合中,并且点权之和分别为\([0,m]\)的二 ...

  2. Codeforces 250 E. The Child and Binary Tree [多项式开根 生成函数]

    CF Round250 E. The Child and Binary Tree 题意:n种权值集合C, 求点权值和为1...m的二叉树的个数, 形态不同的二叉树不同. 也就是说:不带标号,孩子有序 ...

  3. Codeforces 438E The Child and Binary Tree - 生成函数 - 多项式

    题目传送门 传送点I 传送点II 传送点III 题目大意 每个点的权值$c\in {c_{1}, c_{2}, \cdots, c_{n}}$,问对于每个$1\leqslant s\leqslant ...

  4. cf438E. The Child and Binary Tree(生成函数 多项式开根 多项式求逆)

    题意 链接 Sol 生成函数博大精深Orz 我们设\(f(i)\)表示权值为\(i\)的二叉树数量,转移的时候可以枚举一下根节点 \(f(n) = \sum_{w \in C_1 \dots C_n} ...

  5. [题解] Codeforces 438 E The Child and Binary Tree DP,多项式,生成函数

    题目 首先令\(f_i\)表示权值和为\(i\)的二叉树数量,\(f_0=1\). 转移为:\(f_k=\sum_{i=0}^n \sum_{j=0}^{k-c_i}f_j f_{k-c_i-j}\) ...

  6. CF438E The Child and Binary Tree 生成函数、多项式开根

    传送门 设生成函数\(C(x) = \sum\limits_{i=0}^\infty [\exists c_j = i]x^i\),答案数组为\(f_1 , f_2 , ..., f_m\),\(F( ...

  7. [codeforces438E]The Child and Binary Tree

    [codeforces438E]The Child and Binary Tree 试题描述 Our child likes computer science very much, especiall ...

  8. [题解] CF438E The Child and Binary Tree

    CF438E The Child and Binary Tree Description 给一个大小为\(n\)的序列\(C\),保证\(C\)中每个元素各不相同,现在你要统计点权全在\(C\)中,且 ...

  9. Codeforces Round #250 (Div. 1)E. The Child and Binary Tree

    题意:有一个集合,求有多少形态不同的二叉树满足每个点的权值都属于这个集合并且总点权等于i 题解:先用生成函数搞出来\(f(x)=f(x)^2*c(x)+1\) 然后转化一下变成\(f(x)=\frac ...

随机推荐

  1. 四. Jmeter--JDBC 请求

    一,  SQLserver 1.下载 JDBC Driver (sqljdbc_6.0.8112.100_enu.exe) https://www.microsoft.com/en-us/downlo ...

  2. go标识符、变量、常量

    标识符 标识符是用来表示Go中的变量名或者函数名,以字母或_开头.后可跟着字母.数字. _ 关键字 关键字是Go语言预先定义好的,有特殊含义的标识符. 变量 1. 语法:var identifier ...

  3. SQLite3 C/C++ 开发接口简介(API函数)

    from : http://www.sqlite.com.cn/MySqlite/5/251.Html 1.0 总览 SQLite3是SQLite一个全新的版本,它虽然是在SQLite 2.8.13的 ...

  4. Linux打补丁的一个简单例子

        前言 在做开发的过程中难免需要给内核及下载的一些源码打补丁或者说是升级,所以我们学习在Linux下使用diff制作补丁以及如何使用patch打补丁显得尤为重要. diff与patch命令介绍 ...

  5. Spring mvc知识点总结——面试篇

    一.MVC思想MVC(Model-View-Controller)三元组的概念:1.Model(模型):数据模型,提供要展示的数据,因此包含数据和行为,可以认为是领域模型或JavaBean组件(包含数 ...

  6. Kail Linux渗透测试之测试工具Armitage

    Kali Linux下的Armitage是一个很强大的渗透工具,图形化操作页面,但我们把kali linux装在虚拟机里面,然后再启动armitage就会出现一个error,他会给你一个message ...

  7. 实习day2:@2X图片,git,coding.net,

    @2X是5和6系列的图片,@3X是6P等大屏的图片 本公司目前只用@2X的图片适配. 比如20X27的图片 1x, 就是原始大小: 用2X, 就除以2,变成10X13.5: 如果用3X的, 就除以3, ...

  8. appium--【Mac】提示报错“could not launch WebDriverAgentRunner..........."

    运行appium   WebDriverAgentLib和WebDriverAgentRunner都编译到真机运行成功,未在桌面生成一个没图标的WebDriverAgentRunner 连接并选择自己 ...

  9. centos7 mongodb3.4 安装

    上传tgz 安装包 [root@localhost install_pack]# ll total 274840 -rw-r--r--. 1 root root 9393241 Jun 2 14:36 ...

  10. Hadoop(一)Hadoop的简介与源码编译

    一 Hadoop简介 1.1Hadoop产生的背景 1. HADOOP最早起源于Nutch.Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取.索引.查询等功能,但随着抓取网页数量的增加, ...