闲着没事写篇题解

传送门

LCT维护子树的模板题

树链剖分中,子树可以用dfs序维护。但LCT你总不可能动态维护dfs序啊

LCT之所以不能直接维护子树,是因为LCT只能维护它的重儿子。我们把这棵子树称为重子树。

对于其他子树,我们称为轻子树。轻子树只会储存父节点,要不试试在跑fa的时候顺便维护轻子树?

以此题为例,设s[i]为整棵子树的大小,si[i]为虚子树大小

这里的虚子树指所有虚边连向它的儿子的大小(即s)的和

不难看出,我们询问x,y时

实际上是求(si[x]+1)(si[y]+1)

如何维护s和si?

我们发现,只有当改变了树的形态的时候,才会对s和si产生影响

access:会改变。直接在接头的时候顺便改一下

	void access(int x)
{
for (int y=0;x;y=x,x=fa[x])
{
splay(x);
si[x]+=s[ch[x][1]];
si[x]-=s[ch[x][1]=y];
pushup(x);
}
}

makeroot:虽然改了,其实只是改了下顺序,access和splay里面会改

split:没有,下一个

link和cut:link把父亲的si加一下,cut把父亲的s和si都减一下

(实际上就是直接调用了fa或ch的函数)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
#define MAXN 100005
using namespace std;
namespace Splay
{
int ch[MAXN][2],fa[MAXN];
int rv[MAXN];
int si[MAXN],s[MAXN];
void pushup(int x)
{
s[x]=s[ch[x][0]]+s[ch[x][1]]+si[x]+1;
}
void pushr(int x)
{
swap(ch[x][0],ch[x][1]);
rv[x]^=1;
}
void pushdown(int x)
{
if (rv[x])
{
if (ch[x][0]) pushr(ch[x][0]);
if (ch[x][1]) pushr(ch[x][1]);
rv[x]=0;
}
}
bool isroot(int x)
{
return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;
}
bool get(int x)
{
return ch[fa[x]][1]==x;
}
void rotate(int x)
{
int y=fa[x],z=fa[y];
int l=get(x),r=l^1;
int w=ch[x][r];
if (!isroot(y))
ch[z][get(y)]=x;
ch[x][r]=y;
ch[y][l]=w;
if (w)
fa[w]=y;
fa[y]=x;
fa[x]=z;
pushup(y);
pushup(x);
}
int q[MAXN],top;
void splay(int x)
{
q[top=1]=x;
for (int i=x;!isroot(i);i=fa[i])
q[++top]=fa[i];
for (int i=top;i>=1;i--)
pushdown(q[i]);
while (!isroot(x))
{
int y=fa[x];
if (!isroot(y))
{
if (get(x)==get(y))
rotate(y);
else
rotate(x);
}
rotate(x);
}
pushup(x);
}
}
using namespace Splay;
namespace LCT
{
void access(int x)
{
for (int y=0;x;y=x,x=fa[x])
{
splay(x);
si[x]+=s[ch[x][1]];
si[x]-=s[ch[x][1]=y];
pushup(x);
}
}
void evert(int x)
{
access(x);
splay(x);
pushr(x);
}
void split(int x,int y)
{
evert(x);
access(y);
splay(y);
}
void link(int x,int y)
{
split(x,y);
si[fa[x]=y]+=s[x];
pushup(y);
}
}
using namespace LCT;
inline int read()
{
int ans=0;
char c=getchar();
while (!isdigit(c))
c=getchar();
while (isdigit(c))
ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline char getalpha()
{
char c=getchar();
while (!isalpha(c))
c=getchar();
return c;
}
int main()
{
int n,q;
n=read(),q=read();
for (int i=1;i<=n;i++)
s[i]=1;
while (q--)
{
char c=getalpha();
int x,y;
x=read(),y=read();
if (c=='A')
link(x,y);
else
{
split(x,y);
printf("%I64d\n",(long long)(si[x]+1)*(si[y]+1));
}
}
return 0;
}

【BJOI2014】大融合【LCT】的更多相关文章

  1. [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并

    [BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...

  2. 【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息

    题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量 ...

  3. Luogu4219 BJOI2014 大融合 LCT

    传送门 题意:写一个数据结构,支持图上连边(保证图是森林)和询问一条边两端的连通块大小的乘积.$\text{点数.询问数} \leq 10^5$ 图上连边,$LCT$跑不掉 支持子树$size$有点麻 ...

  4. BZOJ4530[Bjoi2014]大融合——LCT维护子树信息

    题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数 ...

  5. BZOJ.4530.[BJOI2014]大融合(LCT)

    题目链接 BZOJ 洛谷 详见这 很明显题目是要求去掉一条边后两边子树sz[]的乘积. LCT维护的是链的信息,那么子树呢? 我们用s_i[x]来记录轻边连向x的子树的和(记作虚儿子),那么sum[x ...

  6. [BJOI2014]大融合(LCT)

    题面 luogu bzoj是权限题.. 题解 \(LCT\)维护子树信息 因为\(LCT\)中有一些虚子树,\(splay\)维护不了. 所以要新开一个数组来记录 然后注意\(link\)时 是先\( ...

  7. 【洛谷 P4219】 [BJOI2014]大融合(LCT)

    题目链接 维护子树信息向来不是\(LCT\)所擅长的,所以我没搞懂qwq 权当背背模板吧.Flash巨佬的blog里面写了虽然我没看懂. #include <cstdio> #define ...

  8. bzoj 4530 [Bjoi2014]大融合——LCT维护子树信息

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 LCT维护子树 siz .设 sm[ ] 表示轻儿子的 siz 和+1(1是自己的si ...

  9. BZOJ4530:[BJOI2014]大融合(LCT)

    Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...

  10. P4219 [BJOI2014]大融合 LCT维护子树大小

    \(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一 ...

随机推荐

  1. phpStudy 虚拟主机

    转载:http://blog.csdn.net/sinat_35861664/article/details/53557574 windows下配置虚拟主机,实现多域名访问本地项目目录 1.Apach ...

  2. 关于HttpWebRequest发生服务器协议冲突的解决办法

    WinForm下的app.config文件中添加: <system.net>    <settings>      <httpWebRequest useUnsafeHe ...

  3. 关于angularJS的一些用法

    AngularJS 事件指令: ng-click/dblclick ng-mousedown/up ng-mouseenter/leave ng-mousemove/over/out ng-keydo ...

  4. django框架<二>

    django框架:   Models 1.基本创建 Django提供了一个抽象层("Model")的构建和管理Web应用程序的数据. Django使用一种新的方式,即:关系对象映射 ...

  5. shell读取文件的每一行内容并输出【转】

    写法一: #!/bin/bash while read line do echo $line done < file(待读取的文件) 写法二: #!/bin/bash cat file(待读取的 ...

  6. caffe Python API 之Inference

    #以SSD的检测测试为例 def detetion(image_dir,weight,deploy,resolution=300): caffe.set_mode_gpu() net = caffe. ...

  7. javascript你不知道的This

    <你不知道的javascript>这本书读了有好几遍了,似乎每一次读都有新发现,有些内容并不是一下子可以弄懂的,每次读似乎都能明白一些概念.再重读一下this关键字.这个概念非常灵活,也非 ...

  8. Linux下通过源码编译安装程序(configure/make/make install的作用,然后在/etc/profile文件里修改PATH环境变量)

    一.程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 库文件:就是通常我们见到的lib目录下的文件 配置文件:这个不必多说,都知道 帮助文档:通常是我们在 ...

  9. bind1st bind2nd的使用

    STL中的函数 bind1st. bind2nd用于将一个二元算子转换成一元算子,需要两个 参数,要转换的bf和一个值v. 参考:http://blog.csdn.net/simahao/articl ...

  10. css控制单行文本溢出

    1.溢出属性(容器的) overflow:visible/hidden(隐藏)/scroll/auto(自动)/inherit; visible:默认值,内容不会被修剪,会成现在元素框之外: hidd ...