4097: [Usaco2013 dec]Vacation Planning

Description

Air Bovinia is planning to connect the N farms (1 <= N <= 200) that the cows live on. As with any airline, K of these farms (1 <= K <= 100, K <= N) have been selected as hubs. The farms are conveniently numbered 1..N, with farms 1..K being the hubs. Currently there are M (1 <= M <= 10,000) one-way flights connecting these farms. Flight i travels from farm u_i to farm v_i, and costs d_i dollars (1 <= d_i <= 1,000,000). The airline recently received a request for Q (1 <= Q <= 10,000) one-way trips. The ith trip is from farm a_i to farm b_i. In order to get from a_i to b_i, the trip may include any sequence of direct flights (possibly even visiting the same farm multiple times), but it must include at least one hub (which may or may not be be the start or the destination). This requirement may result in there being no valid route from a_i to b_i. For all other trip requests, however, your goal is to help Air Bovinia determine the minimum cost of a valid route. 

Input

* Line 1: Four integers: N, M, K, and Q. 
* Lines 2..1+M: Line i+1 contains u_i, v_i, and d_i for flight i. 
* Lines 2+M..1+M+Q: Line 1+M+i describes the ith trip in terms of a_i and b_i 

Output

* Line 1: The number of trips (out of Q) for which a valid route is possible. 
* Line 2: The sum, over all trips for which a valid route is possible, of the minimum possible route cost.

Sample Input

3 3 1 3
3 1 10
1 3 10
1 2 7
3 2
2 3
1 2
INPUT DETAILS: There are three farms (numbered 1..3); farm 1 is a hub. There is a $10 flight from farm 3 to farm 1, and so on. We wish to look for trips from farm 3 to farm 2, from 2->3, and from 1->2.

Sample Output

2
24
OUTPUT DETAILS: The trip from 3->2 has only one possible route, of cost 10+7. The trip from 2->3 has no valid route, since there is no flight leaving farm 2. The trip from 1->2 has only one valid route again, of cost 7.
Contest has ended. No further submissions allowed.

Source

Silver

题解:

题意是n个点m条有向边,求两两之间的最短路,要求路径上必须经过编号1~k的至少一个点

第一次接触分层图最短路。。

其实构图还是挺简单的,把图复制成两份,其中1到k的点向下连边权为0的边。

然后floyd最短路。。

#include<stdio.h>
#include<iostream>
using namespace std;
int n,m,K,Q,i,j,k,x,y,z,cnt,f[405][405];
long long ans;
int main()
{
scanf("%d%d%d%d",&n,&m,&K,&Q);
for(i=1;i<=n<<1;i++)
for(j=1;j<=n<<1;j++) f[i][j]=1e9;
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
f[x][y]=f[x+n][y+n]=z;
}
for(i=1;i<=K;i++) f[i][n+i]=0;
for(k=1;k<=n<<1;k++)
for(i=1;i<=n<<1;i++)
for(j=1;j<=n<<1;j++)
if(f[i][k]+f[k][j]<f[i][j]) f[i][j]=f[i][k]+f[k][j];
while(Q--)
{
scanf("%d%d",&x,&y);
if(f[x][y+n]!=1e9)
{
cnt++;
ans+=f[x][y+n];
}
}
cout<<cnt<<endl<<ans;
return 0;
}

  

bzoj 4097: [Usaco2013 dec]Vacation Planning的更多相关文章

  1. bzoj4097 [Usaco2013 dec]Vacation Planning

    Description Air Bovinia is planning to connect the N farms (1 <= N <= 200) that the cows live ...

  2. [Usaco2013 DEC] Vacation Planning

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4093 [算法] 对于k个枢纽 , 分别在正向图和反向图上跑dijkstra最短路 , ...

  3. bzoj 4094: [Usaco2013 Dec]Optimal Milking

    4094: [Usaco2013 Dec]Optimal Milking Description Farmer John最近购买了N(1 <= N <= 40000)台挤奶机,编号为1 . ...

  4. 【Floyd(并非水题orz)】BZOJ4093-[Usaco2013 Dec]Vacation Planning

    最近刷水太多标注一下防止它淹没在silver的水题中……我成为了本题,第一个T掉的人QAQ [题目大意] Bovinia设计了连接N (1 < = N < = 20,000)个农场的航班. ...

  5. 【BZOJ4094】[Usaco2013 Dec]Optimal Milking 线段树

    [BZOJ4094][Usaco2013 Dec]Optimal Milking Description Farmer John最近购买了N(1 <= N <= 40000)台挤奶机,编号 ...

  6. [bzoj 3048] [Usaco2013 Jan]Cow Lineup

    [bzoj 3048] [Usaco2013 Jan]Cow Lineup Description 给你一个长度为n(1<=n<=100,000)的自然数数列,其中每一个数都小于等于10亿 ...

  7. BZOJ 3389: [Usaco2004 Dec]Cleaning Shifts安排值班

    题目 3389: [Usaco2004 Dec]Cleaning Shifts安排值班 Time Limit: 1 Sec  Memory Limit: 128 MB Description      ...

  8. BZOJ 1692: [Usaco2007 Dec]队列变换( 贪心 )

    数据 n <= 30000 , 然后 O( n² ) 的贪心也过了..... USACO 数据是有多弱啊 = = ( ps : BZOJ 1640 和此题一模一样 , 双倍经验 ) ------ ...

  9. BZOJ 1692: [Usaco2007 Dec]队列变换 [后缀数组 贪心]

    1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1383  Solved: 582[Submit][St ...

随机推荐

  1. js小记:对象、原型及原型链、面向对象编程

    一.js对象 1.js对象 js对象是一种复合数据类型,它可以把多个(不同类型的)数据集中在一个变量中,并且给每个数据起名字. 2.对象与数组 对象的每个数据有对应的名字(属性名),我们通过叫名字访问 ...

  2. 【leetcode 简单】第三十八题 两数之和 II - 输入有序数组

    给定一个已按照升序排列 的有序数组,找到两个数使得它们相加之和等于目标数. 函数应该返回这两个下标值index1 和 index2,其中 index1 必须小于 index2. 说明: 返回的下标值( ...

  3. sublime格式化css代码插件:css format

    有时会从网上下载一些css压缩文件,打开后所有代码都在一行,不利于阅读,通过css format插件,能快速展开代码,方便阅读. 参考:Sublime Text 上最好用的 CSS 格式化插件 —— ...

  4. python作业类Fabric主机管理程序开发(第九周)

    作业需求: 1. 运行程序列出主机组或者主机列表 2. 选择指定主机或主机组 3. 选择让主机或者主机组执行命令或者向其传输文件(上传/下载) 4. 充分使用多线程或多进程 5. 不同主机的用户名密码 ...

  5. 【过滤器】web中过滤器的使用与乱码问题解决

    一.过滤器Filter 1.filter的简介 filter是对客户端访问资源的过滤,符合条件放行,不符合条件不放行,并且可以对目   标资源访问前后进行逻辑处理 2.快速入门 步骤: 1)编写一个过 ...

  6. perl6正则 2: 字母,数字,空格,下划线, 字符集

    数字, 字母, 下划线 在perl6中, 如果是 数字, 字母, 下划线, 在正则里可以正接写上. > so / True > so 'perl6_' ~~ /_/ True > 非 ...

  7. C++学习之路(十):虚继承引入的执行效率

    这篇文章不知道取啥名字了,暂且这样叫,直接看场景就明白了.节选自<深度探索C++对象模型> Point3d origin, *pt = &origin; (1)origin.x = ...

  8. 问题解决:The content of the adapter has changed but ListView did not receive a notification

    1. 不要在后台线程中直接调用adapter 2. 不要在后台线程中修改adapter绑定的数据 如果对adapter或者adapter绑定的数据是在线程中,加上runOnUiThread就可以了 r ...

  9. ovirt系统磁盘删除后清理功能验证步骤

    测试步骤主要是针对ovirt系统磁盘的‘删除后清理’功能,如下图所示: 测试如下两种方式: 预置条件: 搭建iscsi服务器,且划分一个11G的盘 勾选删除后清理操作步骤:1 .在linux虚拟机 d ...

  10. windows下制作debian U盘启动

    制作平台:Windows 7 制作debian版本:debian 7.4 wheezy 1.下载引导镜像,包含三个文件:boot.img.gz(解压备用).initrd.gz 和 vmlinuz. h ...