稀疏编码直方图----一种超越HOG的轮廓特征
该论文是一篇来自CMU 的CVPR2013文章,提出了一种基于稀疏编码的轮廓特征,简称HSC(Histogram of Sparse Code),并在目标检测中全面超越了HOG(Histogram of Gradient)本文介绍HSC的思路及其计算过程。
如图3所示,HSC方法种采用了疏编码原理来提取图像特征的方法,即根据学习得到的字典对图像块Patch进行重新编码。
算法主要包括了两部分,分别是字典学习和特征提取。
字典学习。
1. 类似于基于K-Means方法的字典学习,稀疏编码的字典学习室通过求解一个关于1范数的最优化问题。字典学习的步骤如下:
2. 初始化。假设字典的长度为M,图像小块的宽高大小为,其中p可以去(3,5,7,…)。
3. 图像小块获取。收集关于某一类目标的图像,然后将他们切成正方形的小块,宽高大小为,如图1所示。将图像小块按照图像灰度,先行后列的展成向量形式,于是图像小块的集合记为
。
4. 字典学习。根据集合,学习得到最优的字典
,字典的行列为
,
表示长度为
的列向量,通过求解以下方程得到:
其中,
表示长度为
的列向量。此最优化问题可以通过现有的一些软件工具求解得到,如K-SVD方法,通过交替式的来求解最优D和X。论文中指定K为1。
5. 输出字典D。如图2所示。
图1、图像小块获取
图2、学习得到的字典
特征提取
1. 学习到字典之后,可利用字典对指定的图像进行特征的提取。提取的过程如下:
2. 初始化,给定一张图像,提取指定位置的特征,如图1所示,提取狗的特征,将狗分成若干个小单元块,简称为Cell。
3. 单元块的稀疏编码。如图1所示,对每个cell,记为y,进行稀疏编码。即已知y和字典D,求解其最优的稀疏表达x:注意x的维度和y是不相等的,x的维度是M
列向量,x是y的一个稀疏的表达,x的元素只有少数是非零的。
4. 平滑稀疏解x。对x中的每个元素,四邻域的双线性插值。
5. 计算x单元块的16邻域单元块的平均单元块,即相应元素相加然后除以16。
6. 归一化平均单元块x。归一化直方图的方法是二范数归一化,即
7. 将所有归一化后的平均单元块,按照先行后列的顺序展开成向量,所得到的向量即为对应的HSC特征直方图。
图3、HSC特征提取流程
图片有些不清晰,附上word版本:HSC特征提取cvpr2013.zip
稀疏编码直方图----一种超越HOG的轮廓特征的更多相关文章
- 转载 deep learning:八(SparseCoding稀疏编码)
转载 http://blog.sina.com.cn/s/blog_4a1853330102v0mr.html Sparse coding: 本节将简单介绍下sparse coding(稀疏编码),因 ...
- Sparsity稀疏编码(二)
为了更进一步的清晰理解大脑皮层对信号编码的工作机制(策略),需要把他们转成数学语言,因为数学语言作为一种严谨的语言,可以利用它推导出期望和要寻找的程式.本节就使用概率推理(bayes v ...
- 稀疏编码概率解释(基于1996年Olshausen与Field的理论 )
一.Sparse Coding稀疏编码 稀疏编码算法是一种无监督学习方法,它用来寻找一组“超完备”基向量来更高效地表示样本数据.稀疏编码算法的目的就是找到一组基向量 ,使得我们能将输入向量 表示为这些 ...
- UFLDL深度学习笔记 (七)拓扑稀疏编码与矩阵化
UFLDL深度学习笔记 (七)拓扑稀疏编码与矩阵化 主要思路 前面几篇所讲的都是围绕神经网络展开的,一个标志就是激活函数非线性:在前人的研究中,也存在线性激活函数的稀疏编码,该方法试图直接学习数据的特 ...
- 稀疏编码(Sparse Coding)的前世今生(二)
为了更进一步的清晰理解大脑皮层对信号编码的工作机制(策略),须要把他们转成数学语言,由于数学语言作为一种严谨的语言,能够利用它推导出期望和要寻找的程式.本节就使用概率推理(bayes views)的方 ...
- JAVA实现Base64编码的三种方式
摘要: Javabase64编码的三种方式 有如下三种方式: 方式一:commons-codec.jar Java代码 1. String base64String="whuang12 ...
- Sparsity稀疏编码(三)
稀疏编码(sparse coding)和低秩矩阵(low rank)的区别 上两个小结介绍了稀疏编码的生命科学解释,也给出一些稀疏编码模型的原型(比如LASSO),稀疏编码之前的探讨文章 ...
- Sparsity稀疏编码(一)
稀疏编码来源于神经科学,计算机科学和机器学习领域一般一开始就从稀疏编码算法讲起,上来就是找基向量(超完备基),但是我觉得其源头也比较有意思,知道根基的情况下,拓展其应用也比较有底气.哲学.神经科学.计 ...
- 稀疏编码(Sparse Coding)的前世今生(一) 转自http://blog.csdn.net/marvin521/article/details/8980853
稀疏编码来源于神经科学,计算机科学和机器学习领域一般一开始就从稀疏编码算法讲起,上来就是找基向量(超完备基),但是我觉得其源头也比较有意思,知道根基的情况下,拓展其应用也比较有底气.哲学.神经科学.计 ...
随机推荐
- ogg使用语句
create tablespace ogg datafile '/oracle/oradata/DRMT/ogg01.dbf' size 50M autoextend on; edit params ...
- php sprintf格式化注入
URL:http://efa4e2c2b8df4ce69454639f4e3727071652c31167f341a4.game.ichunqiu.com/ 简单的说就是sprintf中%1$\'会将 ...
- Guava cache功能简介(转)
原文链接:http://ifeve.com/google-guava-cachesexplained/ 范例 LoadingCache<Key, Graph> graphs = Cache ...
- CPU运行时间——time
用途说明time命令常用于测量一个命令的运行时间,注意不是用来显示和修改系统时间的(这是date命令干的事情).但是今天我通过查看time命令的手册页,发现它能做的不仅仅是测量运行时间,还可以测量内存 ...
- BestCoder #88(1001 1002)
Find Q Accepts: 392 Submissions: 780 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/131 ...
- 图像显著性论文(一)—A Model of saliency Based Visual Attention for Rapid Scene Analysis
这篇文章是图像显著性领域最具代表性的文章,是在1998年Itti等人提出来的,到目前为止引用的次数超过了5000,是多么可怕的数字,在它的基础上发展起来的有关图像显著性论文更是数不胜数,论文的提出主要 ...
- Binary Tree Zigzag Level Order Traversal——关于广度优先的经典面试题
Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to ...
- SimpleCV install and "You need the python image library to save by filehandle"
2015年5月3日 22:15:43 在win7下安装了python.simplecv,试着运行simplecv官网第一个hello world程序结果报错,提示说%python%/lib/site- ...
- day3 集合set()实例分析
集合,我们在高中的时候专门学习过集合,并集,交集,差集等,下面来看一下集合的定义,如下: 集合(简称集)是数学中一个基本概念,它是集合论的研究对象,集合论的基本理论直到19世纪才被创立.最简单 ...
- day2 列表中常用的方法
列表中有很多方法,下面来看看常用的方法,我们知道,字符串是以字符列表形式存储的.因此上面学习的字符串中的很多方法在列表中也有. 1.extend() extend()列表的扩展,把两个列表进行 ...