HDU4612Warm up 边双连通 Tarjan缩点
If we can isolate some planets from others by breaking only one channel , the channel is called a bridge of the transportation system.
People don't like to be isolated. So they ask what's the minimal number of bridges they can have if they decide to build a new channel.
Note that there could be more than one channel between two planets.
Input The input contains multiple cases.
Each case starts with two positive integers N and M , indicating the number of planets and the number of channels.
(2<=N<=200000, 1<=M<=1000000)
Next M lines each contains two positive integers A and B, indicating a channel between planet A and B in the system. Planets are numbered by 1..N.
A line with two integers '0' terminates the input.Output For each case, output the minimal number of bridges after building a new channel in a line.Sample Input
4 4
1 2
1 3
1 4
2 3
0 0
Sample Output
0
要求:树的直径+缩点
和上一道题纠结了好久,到底怎么加入一个块。
首先要明确边双连通分量和点双连通分量的区别与联系
1.二者都是基于无向图
2.边双连通分量是删边后还连通,而后者是删点
3.点双连通分量一定是边双连通分量(除两点一线的特殊情况),反之不一定,见HDU3749
4.点双连通分量可以有公共点,而边双连通分量不能有公共边
最后补充:
点的双连通存桥(边),每访问一条边操作一次。
边的双连通存割点(点),访问完所有边后操作。
此题是边双连通,所以属于后者。yeah~~·
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
using namespace std;
const int maxn=;
const int maxm=;
int Laxt[maxn],Next[maxm],To[maxm],cnt,vis[maxn];
int dfn[maxn],low[maxn];
int times,ans,cut_cnt,n,m;
int scc[maxn],scc_cnt;
int dis[maxn],S;
int stk[maxn],top,Maxdis,Maxpos;
vector<int>G[maxn];
void _init()
{
memset(Laxt,,sizeof(Laxt));
memset(dfn,,sizeof(dfn));
memset(scc,,sizeof(scc));
memset(vis,,sizeof(vis));
ans=cut_cnt=top=scc_cnt=cnt=times=;
}
void _add(int u,int v)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
}
void _tarjan(int u,int v){
dfn[u]=low[u]=++times;
int num_v=;
stk[top++]=u;
for(int i=Laxt[u];i;i=Next[i]){
if(To[i]==v){
num_v++;
if(num_v==) continue;//保证重边
}
if(!dfn[To[i]]){
_tarjan(To[i],u);
if(low[u]>low[To[i]]) low[u]=low[To[i]];
if(dfn[u]<low[To[i]]) cut_cnt++;//割边,对应缩点后是边
}
else if(dfn[To[i]]<low[u]) low[u]=dfn[To[i]];
}
if(dfn[u]<=low[u]){//割点或者环里面第一个访问到的点(点连通缩点)
G[++scc_cnt].clear();
for(;;){
int tmp=stk[--top];
scc[tmp]=scc_cnt;
if(tmp==u) break;
}
}
}
void _rebuild()//重建无环图
{
for(int i=;i<=n;i++)
for(int j=Laxt[i];j;j=Next[j])
if(scc[i]!=scc[To[j]])
G[scc[i]].push_back(scc[To[j]]);
}
void _dfs(int u)
{
int i,L=G[u].size();
for(int i=;i<L;i++)
if(!dis[G[u][i]]){
dis[G[u][i]]=dis[u]+;
_dfs(G[u][i]);
}
}
void _findR()
{
memset(dis,,sizeof(dis));
dis[]=;S=;Maxdis=;
_dfs();
for(int i=;i<=scc_cnt;i++)
if(dis[i]>dis[S]) S=i;
memset(dis,,sizeof(dis));
dis[S]=;
_dfs(S);
for(int i=;i<=scc_cnt;i++)
if(dis[i]>Maxdis) Maxdis=dis[i];
Maxdis--;
}
int main()
{
int i,j,k,u,v;
while(~scanf("%d%d",&n,&m)){
if(n==&&m==) return ;
_init();
for(i=;i<=m;i++){
scanf("%d%d",&u,&v);
_add(u,v);
_add(v,u);
}
for(i=;i<=n;i++)
if(!dfn[i]) _tarjan(i,-);
_rebuild();
_findR();
printf("%d\n",cut_cnt-Maxdis);
}
return ;
}
HDU4612Warm up 边双连通 Tarjan缩点的更多相关文章
- poj3352Road Construction 边双连通+伪缩点
/* 对于边双连通分支,求法更为简单. 仅仅需在求出全部的桥以后,把桥边删除.\ 原图变成了多个连通块,则每一个连通块就是一个边双连通分支. 桥不属于不论什么 一个边双连通分支,其余的边和每一个顶点都 ...
- 图论--边双连通V-DCC缩点
// tarjan算法求无向图的割点.点双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> ...
- 图论--双连通E-DCC缩点模板
// tarjan算法求无向图的桥.边双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> ...
- HDU4612(Warm up)2013多校2-图的边双连通问题(Tarjan算法+树形DP)
/** 题目大意: 给你一个无向连通图,问加上一条边后得到的图的最少的割边数; 算法思想: 图的边双连通Tarjan算法+树形DP; 即通过Tarjan算法对边双连通缩图,构成一棵树,然后用树形DP求 ...
- POJ-3352 Road Construction,tarjan缩点求边双连通!
Road Construction 本来不想做这个题,下午总结的时候发现自己花了一周的时间学连通图却连什么是边双连通不清楚,于是百度了一下相关内容,原来就是一个点到另一个至少有两条不同的路. 题意:给 ...
- hdu 4612 Warm up 双连通缩点+树的直径
首先双连通缩点建立新图(顺带求原图的总的桥数,事实上因为原图是一个强连通图,所以桥就等于缩点后的边) 此时得到的图类似树结构,对于新图求一次直径,也就是最长链. 我们新建的边就一定是连接这条最长链的首 ...
- POJ 3177 Redundant Paths (边双连通+缩点)
<题目链接> <转载于 >>> > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...
- POJ - 3177 Redundant Paths (边双连通缩点)
题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...
- tarjan算法与无向图的连通性(割点,桥,双连通分量,缩点)
基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分 ...
随机推荐
- 解题报告:poj 3070 - 矩阵快速幂简单应用
2017-09-13 19:22:01 writer:pprp 题意很简单,就是通过矩阵快速幂进行运算,得到斐波那契数列靠后的位数 . 这是原理,实现部分就是矩阵的快速幂,也就是二分来做 矩阵快速幂可 ...
- ThinkPHP的URL重写时遇到No input file specified的解决方法
因为在Fastcgi模式下,php不支持rewrite的目标网址的PATH_INFO的解析 ThinkPHP运行在URL_MODEL=2时,会出现 No input file specified.的情 ...
- Java循环跳转语句之 break
生活中,我们经常会因为某些原因中断既定的任务安排.如在参加 10000 米长跑时,才跑了 500 米就由于体力不支,需要退出比赛.在 Java 中,我们可以使用 break 语句退出指定的循环,直接执 ...
- Java之聊天室系统设计一
任务: 先上实现效果图: 登陆界面: index.jsp: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN& ...
- 运行UART的程序
1 捎程序的时候,注意,捎入的是norflash,此时的按钮应该在norFlash.2 当捎入成功的时候,开始运行程序时,应该把按钮按回nandflash,因为程序的启动就是在nandflash,他把 ...
- atom的初次尝试,activate-power-mode 插件和做gif
编辑器是github 和sublime 的综合,作为一个经常逛github的人,还很喜欢sublime的开发,还有什么好不尝试的理由呢. 好吧,我承认,编辑器有很多,但是像它那样炫酷的很少,作为喜欢一 ...
- vim 的寄存器
If you've been following my series on Vim, it should be clear now that Vim has a pretty clear philos ...
- SpringAOP源码分析总结
1.Advisor(增强器):充当Advice和Pointcut的适配器,类似使用Aspect的@Aspect注解的类(前一章节所述).一般有advice和pointcut属性. 祖先接口为org.s ...
- 3.java内存模型以及happens-before规则
1. JMM的介绍 在上一篇文章中总结了线程的状态转换和一些基本操作,对多线程已经有一点基本的认识了,如果多线程编程只有这么简单,那我们就不必费劲周折的去学习它了.在多线程中稍微不注意就会出现线程安全 ...
- IOS-OC 编码建议
“神在细节之中” Objective-C 是 C 语言的扩展,增加了动态类型和面对对象的特性.它被设计成具有易读易用的,支持复杂的面向对象设计的编程语言.它是 Mac OS X 以及 iPhone 的 ...