gsoap
1. 什么是gSOAP
gSOAP是一个夸平台的,用于开发Web Service服务端和客户端的工具,在Windows、Linux、MAC OS和UNIX下使用C和C++语言编码,集合了SSL功能。gSOAP是一个开源的项目,用它可以方便的使用c/c++地进行SOAP客户端和服务器端编程,而不必了解xml和SOAP协议的细节。
2. 如何获取gSOAP
官网地址:
http://genivia.com/Products/gsoap/index.html
开源主页地址:
http://gsoap2.sourceforge.net/
目前版本为2.8.0
http://sourceforge.net/projects/gsoap2/files/gSOAP/gsoap_2.8.0.zip/download
gsoap的更多相关文章
- gsoap设置超时
1.修改gsoap自动生成的代码才能进行超时设置(我这边访问web service的代码都是gsoap工具自动生成.根据wsdl接口) 2.找到生成的soapwwwsdlBindingProxy.cp ...
- gSOAP MTOM
前言 需要准备的知识:wsdl,soap,gSOAP,C++,fidder. 首先介绍几个相关的概念 1.MTOM基础概念 MTOM(Message Transmission Optimiz ...
- gsoap框架下的onvif程序流程分析
SOAP_FMAC5 int SOAP_FMAC6 soap_serve(struct soap *soap) { do { unsigned int k = soap->max_keep_al ...
- 基于gSOAP使用头文件的C语言版web service开发过程例子
基于gSOAP使用头文件的C语言版web service开发过程例子 一服务端 1 打开VS2005,创建一个工程,命名为calcServer. 2 添加一个头文件calc.h,编辑内容如下: 1// ...
- gSoap的 “error LNK2001: 无法解析的外部符号 _namespaces”解决方法
gSoap是C/C++开发webService服务第三方的公开类库. 出现上述错误是因为缺少必要的头文件导致的. 在用wsdl2h生成头文件的时候,一并生成了类似 xx.nsmap 的文件,这个文件实 ...
- 在Windows下用gSoap实现简单加法实例
实现一个简单的a+b程序,在服务器端写一个程序,里面包含了a+b的函数,然后通过客户端代码向其发送两个数字,在服务器运算得到结果返回给客户端显示出来. 1.在gSoap的官网上下载文件夹,本人的版本是 ...
- [转贴]gsoap使用心得!
最近换了个工作环境,现在在大望路这边上班,呵,刚上班接到的任务就是熟悉gsoap!废话少说,现在开始gSoap学习! gSOAP是一个夸平台的,用于开发Web Service服务端和客户端的工具,在W ...
- [转贴]Windows下gSoap交叉编译环境的搭建
本人直接就用过gSoap,它是用以C/C++写webservice的利器 交叉编译的时候,有两个很关键的程序: soapcpp2.exe wsdl2h.exe ...
- 使用GSoap开发WebService客户端与服务端
Gsoap 编译工具提供了一个SOAP/XML 关于C/C++ 语言的实现, 从而让C/C++语言开发web服务或客户端程序的工作变得轻松了很多. 用gsoap开发web service的大致思路 我 ...
- gSoap实现ONVIF中xsd__anyType到具体结构类型的转换
上一篇文章已经粗略计划要讨论gsoap关于序列化/解析编程. 本文则阐述一下关于gsoap生成代码的一些重要特征方法及使用.如题,下我们从ONVIF生成的C码中,挑选简单的一个类型来试验一下与xsd_ ...
随机推荐
- 再谈mobile web retina 下 1px 边框解决方案
本文实际上想说的是ios8下 1px解决方案. 1px的边框在devicePixelRatio = 2的retina屏下会显示成2px,在iphone 6 plug 下,更显示成3px.由其影响美感. ...
- FastReport.Net使用:[4]分组
1.绘制报表标题和栏首. 2.设置报表栏,为数据区添加一个分组 3.右键分组页眉,在其右键菜单中选择“编辑”,显示分组编辑对话框. 设置分组条件,可直接通过下拉菜单选择Table表中的[学号]列:也能 ...
- hibernate-release-4.3.11.Final资源包介绍
资源下载 hibernate-release-4.3.11.Final documentation 包 相关文档 lib 相关jar包 required --开发中必须要加入的包 optional ...
- [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)
大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...
- BZOJ 3998: [TJOI2015]弦论 后缀自动机 后缀自动机求第k小子串
http://www.lydsy.com/JudgeOnline/problem.php?id=3998 后缀自动机应用的一个模板?需要对len进行一个排序之后再统计每个出现的数量,维护的是以该字符串 ...
- JZYZOJ1261 字典序最小的lis
http://172.20.6.3/Problem_Show.asp?id=1261 求字典序方法: f[i]表示i位数字的最长上升子序列长度,len为最长上升子序列长度,ans[t]为第t位答案 ...
- Problem C: 深入浅出学算法004-求多个数的最小公倍数
Description 求n个整数的最小公倍数 Input 多组测试数据,先输入整数T表示组数 然后每行先输入1个整数n,后面输入n个整数k1 k2...kn Output 求k1 k2 ...kn的 ...
- bzoj 1503: [NOI2004]郁闷的出纳员 -- 权值线段树
1503: [NOI2004]郁闷的出纳员 Time Limit: 5 Sec Memory Limit: 64 MB Description OIER公司是一家大型专业化软件公司,有着数以万计的员 ...
- Zookeeper启动和集群选举
1. QuorumPeerMain运行 1)判断是采用单实例模式还是多实例模式启动QuorumPeerMain 2)在多实例模式下,加载启动参数中指定的配置文件 3)启动QuorumPeer publ ...
- Octopress + GitHub Page 搭建个人博客
Tips:博客已搬家,新地址:http://wanxudong.top 首先说明两个关键术语: Octopress Octopress是基于 Jekyll 的博客框架.他们的关系就像 jQuery 与 ...