转 http://www.jianshu.com/p/6f3ee90ab7d3

CompletableFuture类实现了CompletionStage和Future接口。Future是Java 5添加的类,用来描述一个异步计算的结果,但是获取一个结果时方法较少,要么通过轮询isDone,确认完成后,调用get()获取值,要么调用get()设置一个超时时间。但是这个get()方法会阻塞住调用线程,这种阻塞的方式显然和我们的异步编程的初衷相违背。
为了解决这个问题,JDK吸收了guava的设计思想,加入了Future的诸多扩展功能形成了CompletableFuture。

CompletionStage是一个接口,从命名上看得知是一个完成的阶段,它里面的方法也标明是在某个运行阶段得到了结果之后要做的事情。

  1. 进行变换

    public <U> CompletionStage<U> thenApply(Function<? super T,? extends U> fn);
    public <U> CompletionStage<U> thenApplyAsync(Function<? super T,? extends U> fn);
    public <U> CompletionStage<U> thenApplyAsync(Function<? super T,? extends U> fn,Executor executor);

    首先说明一下已Async结尾的方法都是可以异步执行的,如果指定了线程池,会在指定的线程池中执行,如果没有指定,默认会在ForkJoinPool.commonPool()中执行,下文中将会有好多类似的,都不详细解释了。关键的入参只有一个Function,它是函数式接口,所以使用Lambda表示起来会更加优雅。它的入参是上一个阶段计算后的结果,返回值是经过转化后结果。
    例如:

     @Test
    public void thenApply() {
    String result = CompletableFuture.supplyAsync(() -> "hello").thenApply(s -> s + " world").join();
    System.out.println(result);
    }

    结果为:

    hello world
  2. 进行消耗

    public CompletionStage<Void> thenAccept(Consumer<? super T> action);
    public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action);
    public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action,Executor executor);

    thenAccept是针对结果进行消耗,因为他的入参是Consumer,有入参无返回值。
    例如:

    @Test
    public void thenAccept(){
    CompletableFuture.supplyAsync(() -> "hello").thenAccept(s -> System.out.println(s+" world"));
    }

    结果为:

    hello world
  3. 对上一步的计算结果不关心,执行下一个操作。
    public CompletionStage<Void> thenRun(Runnable action);
    public CompletionStage<Void> thenRunAsync(Runnable action);
    public CompletionStage<Void> thenRunAsync(Runnable action,Executor executor);

    thenRun它的入参是一个Runnable的实例,表示当得到上一步的结果时的操作。
    例如:

     @Test
    public void thenRun(){
    CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(2000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "hello";
    }).thenRun(() -> System.out.println("hello world"));
    while (true){}
    }

    结果为:

    hello world

    4.结合两个CompletionStage的结果,进行转化后返回

    public <U,V> CompletionStage<V> thenCombine(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn);
    public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn);
    public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn,Executor executor);

    它需要原来的处理返回值,并且other代表的CompletionStage也要返回值之后,利用这两个返回值,进行转换后返回指定类型的值。
    例如:

     @Test
    public void thenCombine() {
    String result = CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(2000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "hello";
    }).thenCombine(CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(3000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "world";
    }), (s1, s2) -> s1 + " " + s2).join();
    System.out.println(result);
    }

    结果为:

    hello world
  4. 结合两个CompletionStage的结果,进行消耗
    public <U> CompletionStage<Void> thenAcceptBoth(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action);
    public <U> CompletionStage<Void> thenAcceptBothAsync(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action);
    public <U> CompletionStage<Void> thenAcceptBothAsync(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action, Executor executor);

    它需要原来的处理返回值,并且other代表的CompletionStage也要返回值之后,利用这两个返回值,进行消耗。
    例如:

     @Test
    public void thenAcceptBoth() {
    CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(2000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "hello";
    }).thenAcceptBoth(CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(3000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "world";
    }), (s1, s2) -> System.out.println(s1 + " " + s2));
    while (true){}
    }

    结果为:

    hello world
  5. 在两个CompletionStage都运行完执行。
    public CompletionStage<Void> runAfterBoth(CompletionStage<?> other,Runnable action);
    public CompletionStage<Void> runAfterBothAsync(CompletionStage<?> other,Runnable action);
    public CompletionStage<Void> runAfterBothAsync(CompletionStage<?> other,Runnable action,Executor executor);

    不关心这两个CompletionStage的结果,只关心这两个CompletionStage执行完毕,之后在进行操作(Runnable)。
    例如:

     @Test
    public void runAfterBoth(){
    CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(2000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "s1";
    }).runAfterBothAsync(CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(3000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "s2";
    }), () -> System.out.println("hello world"));
    while (true){}
    }

    结果为

    hello world

    6.两个CompletionStage,谁计算的快,我就用那个CompletionStage的结果进行下一步的转化操作。

    public <U> CompletionStage<U> applyToEither(CompletionStage<? extends T> other,Function<? super T, U> fn);
    public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other,Function<? super T, U> fn);
    public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other,Function<? super T, U> fn,Executor executor);

    我们现实开发场景中,总会碰到有两种渠道完成同一个事情,所以就可以调用这个方法,找一个最快的结果进行处理。
    例如:

     @Test
    public void applyToEither() {
    String result = CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(3000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "s1";
    }).applyToEither(CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(2000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "hello world";
    }), s -> s).join();
    System.out.println(result);
    }

    结果为:

    hello world
  6. 两个CompletionStage,谁计算的快,我就用那个CompletionStage的结果进行下一步的消耗操作。
    public CompletionStage<Void> acceptEither(CompletionStage<? extends T> other,Consumer<? super T> action);
    public CompletionStage<Void> acceptEitherAsync(CompletionStage<? extends T> other,Consumer<? super T> action);
    public CompletionStage<Void> acceptEitherAsync(CompletionStage<? extends T> other,Consumer<? super T> action,Executor executor);

    例如:

     @Test
    public void acceptEither() {
    CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(3000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "s1";
    }).acceptEither(CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(2000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "hello world";
    }), System.out::println);
    while (true){}
    }

    结果为:

    hello world
  7. 两个CompletionStage,任何一个完成了都会执行下一步的操作(Runnable)。
    public CompletionStage<Void> runAfterEither(CompletionStage<?> other,Runnable action);
    public CompletionStage<Void> runAfterEitherAsync(CompletionStage<?> other,Runnable action);
    public CompletionStage<Void> runAfterEitherAsync(CompletionStage<?> other,Runnable action,Executor executor);

    例如:

     @Test
    public void runAfterEither() {
    CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(3000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "s1";
    }).runAfterEither(CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(2000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "s2";
    }), () -> System.out.println("hello world"));
    while (true) {
    }
    }

    结果为:

    hello world
  8. 当运行时出现了异常,可以通过exceptionally进行补偿。
    public CompletionStage<T> exceptionally(Function<Throwable, ? extends T> fn);

    例如:

     @Test
    public void exceptionally() {
    String result = CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(3000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    if (1 == 1) {
    throw new RuntimeException("测试一下异常情况");
    }
    return "s1";
    }).exceptionally(e -> {
    System.out.println(e.getMessage());
    return "hello world";
    }).join();
    System.out.println(result);
    }

    结果为:

    java.lang.RuntimeException: 测试一下异常情况
    hello world
  9. 当运行完成时,对结果的记录。这里的完成时有两种情况,一种是正常执行,返回值。另外一种是遇到异常抛出造成程序的中断。这里为什么要说成记录,因为这几个方法都会返回CompletableFuture,当Action执行完毕后它的结果返回原始的CompletableFuture的计算结果或者返回异常。所以不会对结果产生任何的作用。
    public CompletionStage<T> whenComplete(BiConsumer<? super T, ? super Throwable> action);
    public CompletionStage<T> whenCompleteAsync(BiConsumer<? super T, ? super Throwable> action);
    public CompletionStage<T> whenCompleteAsync(BiConsumer<? super T, ? super Throwable> action,Executor executor);

    例如:

     @Test
    public void whenComplete() {
    String result = CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(3000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    if (1 == 1) {
    throw new RuntimeException("测试一下异常情况");
    }
    return "s1";
    }).whenComplete((s, t) -> {
    System.out.println(s);
    System.out.println(t.getMessage());
    }).exceptionally(e -> {
    System.out.println(e.getMessage());
    return "hello world";
    }).join();
    System.out.println(result);
    }

    结果为:

    null
    java.lang.RuntimeException: 测试一下异常情况
    java.lang.RuntimeException: 测试一下异常情况
    hello world

    这里也可以看出,如果使用了exceptionally,就会对最终的结果产生影响,它没有口子返回如果没有异常时的正确的值,这也就引出下面我们要介绍的handle。

  10. 运行完成时,对结果的处理。这里的完成时有两种情况,一种是正常执行,返回值。另外一种是遇到异常抛出造成程序的中断。
    public <U> CompletionStage<U> handle(BiFunction<? super T, Throwable, ? extends U> fn);
    public <U> CompletionStage<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn);
    public <U> CompletionStage<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn,Executor executor);

    例如:
    出现异常时

    @Test
    public void handle() {
    String result = CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(3000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    //出现异常
    if (1 == 1) {
    throw new RuntimeException("测试一下异常情况");
    }
    return "s1";
    }).handle((s, t) -> {
    if (t != null) {
    return "hello world";
    }
    return s;
    }).join();
    System.out.println(result);
    }

    结果为:

    hello world

    未出现异常时

    @Test
    public void handle() {
    String result = CompletableFuture.supplyAsync(() -> {
    try {
    Thread.sleep(3000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "s1";
    }).handle((s, t) -> {
    if (t != null) {
    return "hello world";
    }
    return s;
    }).join();
    System.out.println(result);
    }

    结果为:

    s1

上面就是CompletionStage接口中方法的使用实例,CompletableFuture同样也同样实现了Future,所以也同样可以使用get进行阻塞获取值,总的来说,CompletableFuture使用起来还是比较爽的,看起来也比较优雅一点。

CompletableFuture 详解的更多相关文章

  1. Java CompletableFuture 详解

    Future是Java 5添加的类,用来描述一个异步计算的结果.你可以使用isDone方法检查计算是否完成,或者使用get阻塞住调用线程,直到计算完成返回结果,你也可以使用cancel方法停止任务的执 ...

  2. 【多线程】java多线程Completablefuture 详解【在spring cloud微服务之间调用,防止接口超时的应用】【未完成】

    参考地址:https://www.jianshu.com/p/6f3ee90ab7d3 示例: public static void main(String[] args) throws Interr ...

  3. Java8新特性: CompletableFuture详解

    CompletableFuture实现了CompletionStage接口和Future接口,前者是对后者的一个扩展,增加了异步回调.流式处理.多个Future组合处理的能力,使Java在处理多任务的 ...

  4. Spring MVC 学习总结(二)——控制器定义与@RequestMapping详解

    一.控制器定义 控制器提供访问应用程序的行为,通常通过服务接口定义或注解定义两种方法实现. 控制器解析用户的请求并将其转换为一个模型.在Spring MVC中一个控制器可以包含多个Action(动作. ...

  5. Java基础学习总结(33)——Java8 十大新特性详解

    Java8 十大新特性详解 本教程将Java8的新特新逐一列出,并将使用简单的代码示例来指导你如何使用默认接口方法,lambda表达式,方法引用以及多重Annotation,之后你将会学到最新的API ...

  6. 跟着阿里p7一起学java高并发 - 第19天:JUC中的Executor框架详解1,全面掌握java并发核心技术

    这是java高并发系列第19篇文章. 本文主要内容 介绍Executor框架相关内容 介绍Executor 介绍ExecutorService 介绍线程池ThreadPoolExecutor及案例 介 ...

  7. Mysql高手系列 - 第9篇:详解分组查询,mysql分组有大坑!

    这是Mysql系列第9篇. 环境:mysql5.7.25,cmd命令中进行演示. 本篇内容 分组查询语法 聚合函数 单字段分组 多字段分组 分组前筛选数据 分组后筛选数据 where和having的区 ...

  8. Java 异步编程 (5 种异步实现方式详解)

    ​ 同步操作如果遇到一个耗时的方法,需要阻塞等待,那么我们有没有办法解决呢?让它异步执行,下面我会详解异步及实现@mikechen 目录 什么是异步? 一.线程异步 二.Future异步 三.Comp ...

  9. Linq之旅:Linq入门详解(Linq to Objects)

    示例代码下载:Linq之旅:Linq入门详解(Linq to Objects) 本博文详细介绍 .NET 3.5 中引入的重要功能:Language Integrated Query(LINQ,语言集 ...

随机推荐

  1. centos 7 源码包安装、卸载nginx

    1.源码包安装之前,首页安装依赖包 yum -y install gcc gcc-c++ make libtool zlib zlib-devel openssl openssl-devel pcre ...

  2. Java并发(十一):Condition条件

    先做总结: 1.为什么使用Condition条件? synchronized配合Object的wait().notify()系列方法可以实现等待/通知模式. Lock提供了条件Condition,对线 ...

  3. 求矩阵主对角线元素的和 Exercise08_02

    import java.util.Scanner; /** * @author 冰樱梦 * 时间:2018年12月 * 题目:求矩阵主对角线元素的和 * */ public class Exercis ...

  4. 【BZOJ】4709: [Jsoi2011]柠檬

    4709: [Jsoi2011]柠檬 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 779  Solved: 310[Submit][Status][ ...

  5. bzoj 1433: [ZJOI2009]假期的宿舍 -- 最大流

    1433: [ZJOI2009]假期的宿舍 Time Limit: 10 Sec  Memory Limit: 162 MB Description Input Output Sample Input ...

  6. bzoj 2957 楼房重建 分块

    楼房重建 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=29 ...

  7. 《python学习手册》第32章 异常基础

    发生异常与默认的异常处理   当发生异常的时候,我们代码没有刻意捕获这个异常,所以它会一直向上返回到程序顶层,并启用默认的异常处理器:打印标准出错信息.而且会终止程序.   执行下面程序 def fu ...

  8. Git与SVN

    http://www.nowamagic.net/academy/detail/48160207 前面提到,Linus一直痛恨CVS及SVN这些集中式的版本控制系统,为什么呢?Git是分布式版本控制系 ...

  9. [HTML]不让TD中的文本撑开表格(转)

    我经常会遇到这样的问题:在设计好宽度的表格中,因为有些文本信息过长,而把表格撑开(弄的面目全非)!很让人头疼.其实解决这个问题很简单,只要在<td>的样式中加入word-break: br ...

  10. Si4355 低电流 Sub-GHz接收器

    Silicon Labs 的 Si4355 是易于使用的.低电流.Sub-GHz EZRadio® 接收器.覆盖所有主要波段,结合了即插即用的简单性和需要处理各种不同应用的灵活性.紧凑的 3 mm x ...