题面

传送门

题解

不知道概率生成函数是什么的可以看看这篇文章,题解也在里面了

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=305,P=1e9+7;const double eps=1e-10;
double mp[N][N],b[N];char s[N];int bin[N],h[N][N],n,m;
inline int Hash(R int i,R int l,R int r){return ((h[i][r]-1ll*h[i][l-1]*bin[r-l+1])%P+P)%P;}
void Gauss(int n){
fp(i,1,n){
if(mp[i][i]>-eps&&mp[i][i]<eps){
fp(j,i+1,n)if(mp[j][i]<-eps||mp[j][i]>eps){
fp(k,i,n+1)swap(mp[i][k],mp[j][k]);
break;
}
}
double t=1.0/mp[i][i];fp(j,i,n+1)mp[i][j]*=t;
fp(j,i+1,n){
t=mp[j][i];
fp(k,i,n+1)mp[j][k]-=mp[i][k]*t;
}
}
fd(i,n-1,1)fp(j,i+1,n)mp[i][n+1]-=mp[j][n+1]*mp[i][j];
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&m);
bin[0]=b[0]=1;
fp(i,1,m)bin[i]=(bin[i-1]<<1)%P,b[i]=b[i-1]*2;
fp(i,1,n){
scanf("%s",s+1);
fp(j,1,m)h[i][j]=((h[i][j-1]<<1)+(s[j]=='H'))%P;
}
fp(i,1,n){
fp(j,1,n)fp(k,1,m)(Hash(i,1,k)==Hash(j,m-k+1,m))?mp[i][j]+=b[k]:0;
mp[i][n+1]=-1;
}
fp(i,1,n)mp[n+1][i]=1;mp[n+1][n+2]=1;
Gauss(n+1);
fp(i,1,n)printf("%.8lf\n",mp[i][n+2]);
return 0;
}

洛谷P3706 [SDOI2017]硬币游戏(概率生成函数+高斯消元)的更多相关文章

  1. BZOJ 4820 [Sdoi2017]硬币游戏 ——期望DP 高斯消元

    做法太神了,理解不了. 自己想到的是建出AC自动机然后建出矩阵然后求逆计算,感觉可以过$40%$ 用一个状态$N$表示任意一个位置没有匹配成功的概率和. 每种匹配不成功的情况都是等价的. 然后我们强制 ...

  2. bzoj 4820: [Sdoi2017]硬币游戏【kmp+高斯消元】

    有点神,按照1444的做法肯定会挂 注意到它的概率是相同的,所以可以简化状态 详见http://www.cnblogs.com/candy99/p/6701221.html https://www.c ...

  3. 洛谷 3706 [SDOI2017]硬币游戏——思路

    题目:https://www.luogu.org/problemnew/show/P3706 题解:https://blog.csdn.net/gjghfd/article/details/80355 ...

  4. 洛咕 P3706 [SDOI2017]硬币游戏

    假设f[i]是第i个同学胜利的概率,也就是随机序列第一个匹配到s[i]的概率 假设前面有一个字符串\(S\),(假设无限长但没有匹配),现在往后面要加上第i个串\(s[i]\),这个的概率设为\(P_ ...

  5. 洛谷P4035 [JSOI2008]球形空间产生器(高斯消元)

    洛谷题目传送门 球啊球 @xzz_233 qaq 高斯消元模板题,关键在于将已知条件转化为方程组. 可以发现题目要求的未知量有\(n\)个,题目却给了我们\(n+1\)个点的坐标,这其中必有玄机. 由 ...

  6. 【洛谷U20626】gemo 容斥 FWT 高斯消元

    题目大意 给你一个无向图,有\(m\)个询问,每次给你一个点\(x\)和一个点集\(S\),问你从\(x\)开始走,每次从一个点随机的走到与这个点相邻的点,问你访问\(S\)中每个点至少一次的期望步数 ...

  7. BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元

    BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...

  8. LightOJ - 1151概率dp+高斯消元

    概率dp+高斯消元 https://vjudge.net/problem/LightOJ-1151 题意:刚开始在1,要走到100,每次走的距离1-6,超过100重来,有一些点可能有传送点,可以传送到 ...

  9. 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元

    题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...

随机推荐

  1. 【POJ2151】Check the difficulty of problems

    题意 某场比赛有M道问题,T支队伍,和数字N给出每支队伍解决每道问题的概率. 问这场比赛满足下面两个条件的概率 1.每支队伍至少做出一道题 2.冠军队至少做出N道题. 分析 条件2是不是可以转化为 至 ...

  2. K.O. ----- 配置文件没有提示

    ---------------siwuxie095 K.O. ----- 配置文件没有提示 1.解决方法一:联网 只要 PC 联网,配置文件中就有提示 2.解决方法二:手动导入约束文件 约束文件:hi ...

  3. spring+springmvc+mybatis+redis实现缓存

    先搭建好redis环境 需要的jar如下: jdbc.driverClassName=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://localhost:330 ...

  4. opencv在64位4418上的移植

    1.mkdir build 2.cmake-gui 操作系统写Linux 去掉 去掉WITH_CUDA 去掉WITH_GTK 去掉WITH_1394 去掉WITH_GSTREAMER 去掉WITH_L ...

  5. getparameter()和getattribution()的区别的 java详细

    两个Web组件之间为转发关系时,转发源会将要共享 request范围内的数据先用setAttribute将数据放入到HttpServletRequest对象中,然后转发目标通过 getAttribut ...

  6. Python Socket实现简单的聊天室

    通过参考其他牛人的文章和代码,  再根据自己的理解总结得出,  说明已经加在注释中, FYI 主要参考文章: http://blog.csdn.net/dk_zhe/article/details/3 ...

  7. 选项“6”对 /langversion 无效;必须是 ISO-1、ISO-2、3、4、5 或 Default

    部署MVC的时候,因为服务器.NET版本是4.5.1,所以在vs将.NET版本降到4.5.1的时候发布报错. 原因:C#6降到C#5导致 解决办法:修改web.config配置 ,编译选项改为comp ...

  8. 从jvm运行机制来分析 String对象负值

    测试1: 代码 public class Test { public static void main(String[] args) { String s1="aaa"; f(s1 ...

  9. ThinkPhp 生成静态页面

    //开启静态缓存'HTML_CACHE_ON' => true, //开启缓存'HTML_CACHE_TIME' =>60, //开启缓存时间'HTML_FILE_SUFFIX' => ...

  10. winform 中TextBox只能输入数字

    textBox1.KeyPress+=TextNumber_KeyPress; private void TextNumber_KeyPress(object sender, KeyPressEven ...