看题解解的。将着色方案映射为40*40*5*5*5*5*2个状态,40*40表示n*m,5*5*5*5表示上下左右相邻块的颜色,0表示未着色。
2表示横切或者竖切。
基本思路是记忆化搜索然后去重,关键点是可能未切前当前块已经着色了。

 /* 4363 */
#include <iostream>
#include <sstream>
#include <string>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <vector>
#include <deque>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <climits>
#include <cctype>
#include <cassert>
#include <functional>
#include <iterator>
#include <iomanip>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,1024000") #define sti set<int>
#define stpii set<pair<int, int> >
#define mpii map<int,int>
#define vi vector<int>
#define pii pair<int,int>
#define vpii vector<pair<int,int> >
#define rep(i, a, n) for (int i=a;i<n;++i)
#define per(i, a, n) for (int i=n-1;i>=a;--i)
#define clr clear
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1 const int mod = 1e9+;
int dp[][][][][][][]; int calc(int x, int y, int u, int d, int l, int r, int dir) {
if (dp[x][y][u][d][l][r][dir] >= )
return dp[x][y][u][d][l][r][dir]; int& ret = dp[x][y][u][d][l][r][dir]; ret = ;
if ((x==&&dir==) || (y==&&dir==)) {
rep(i, , )
if (i!=u && i!=d && i!=l && i!=r)
++ret;
return ret;
} if (dir) {
rep(i, , y) {
rep(j, , ) {
if (j!=u && j!=d && j!=l) {
ret = (ret + calc(x, y-i, u, d, j, r, )) % mod;
}
if (j!=u && j!=d && j!=r) {
ret = (ret + calc(x, i, u, d, l, j, )) % mod;
}
}
} int tmp = ;
rep(i, , ) {
if (i!=u && i!=d && i!=l) {
rep(j, , ) {
if (j!=u && j!=d && j!=r && j!=i)
++tmp;
}
}
} ret = (ret + mod - tmp*(y-)) % mod;
rep(i, , )
if (i!=u && i!=l && i!=r && i!=d)
++ret; ret %= mod;
} else {
rep(i, , x) {
rep(j, , ) {
if (j!=u && j!=l && j!=r) {
ret = (ret + calc(x-i, y, j, d, l, r, )) % mod;
}
if (j!=d && j!=l && j!=r) {
ret = (ret + calc(i, y, u, j, l, r, )) % mod;
}
}
} int tmp = ;
rep(i, , ) {
if (i!=u && i!=l && i!=r) {
rep(j, , ) {
if (j!=d && j!=l && j!=r && j!=i)
++tmp;
}
}
} ret = (ret + mod - tmp*(x-)) % mod;
rep(i, , )
if (i!=u && i!=l && i!=r && i!=d)
++ret; ret %= mod;
} return ret;
} int main() {
ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
freopen("data.in", "r", stdin);
freopen("data.out", "w", stdout);
#endif int t;
int n, m;
int ans; memset(dp, -, sizeof(dp));
scanf("%d", &t);
while (t--) {
scanf("%d %d", &n, &m);
ans = calc(n, m, , , , , );
printf("%d\n", ans);
} #ifndef ONLINE_JUDGE
printf("time = %d.\n", (int)clock());
#endif return ;
}

【HDOJ】4363 Draw and paint的更多相关文章

  1. 【HDOJ】4056 Draw a Mess

    这题用线段树就MLE.思路是逆向思维,然后每染色一段就利用并查集将该段移除,均摊复杂度为O(n*m). /* 4056 */ #include <iostream> #include &l ...

  2. 【HDOJ】4729 An Easy Problem for Elfness

    其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到 ...

  3. 【HDOJ】【3506】Monkey Party

    DP/四边形不等式 裸题环形石子合并…… 拆环为链即可 //HDOJ 3506 #include<cmath> #include<vector> #include<cst ...

  4. 【HDOJ】【3516】Tree Construction

    DP/四边形不等式 这题跟石子合并有点像…… dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价. 易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[ ...

  5. 【HDOJ】【3480】Division

    DP/四边形不等式 要求将一个可重集S分成M个子集,求子集的极差的平方和最小是多少…… 首先我们先将这N个数排序,容易想到每个自己都对应着这个有序数组中的一段……而不会是互相穿插着= =因为交换一下明 ...

  6. 【HDOJ】【2829】Lawrence

    DP/四边形不等式 做过POJ 1739 邮局那道题后就很容易写出动规方程: dp[i][j]=min{dp[i-1][k]+w[k+1][j]}(表示前 j 个点分成 i 块的最小代价) $w(l, ...

  7. 【HDOJ】【3415】Max Sum of Max-K-sub-sequence

    DP/单调队列优化 呃……环形链求最大k子段和. 首先拆环为链求前缀和…… 然后单调队列吧<_<,裸题没啥好说的…… WA:为毛手写队列就会挂,必须用STL的deque?(写挂自己弱……s ...

  8. 【HDOJ】【3530】Subsequence

    DP/单调队列优化 题解:http://www.cnblogs.com/yymore/archive/2011/06/22/2087553.html 引用: 首先我们要明确几件事情 1.假设我们现在知 ...

  9. 【HDOJ】【3068】最长回文

    Manacher算法 Manacher模板题…… //HDOJ 3068 #include<cstdio> #include<cstring> #include<cstd ...

随机推荐

  1. css圆角 四边投影

    -moz-border-radius: 30px;-webkit-border-radius: 30px; border-radius:30px; -webkit-box-shadow:0 0 10p ...

  2. [OpenXml] Generate excel in memory and dump to file

    public static void GenerateExcelFromStream() { using (MemoryStream memoryStream = new MemoryStream() ...

  3. 快速搭建Web环境 Angularjs + Express3 + Bootstrap3

    快速搭建Web环境 Angularjs + Express3 + Bootstrap3 AngularJS体验式编程系列文章, 将介绍如何用angularjs构建一个强大的web前端系统.angula ...

  4. OCP考试之052

    Oracle Database 11g:Administration I 考试时间:90分钟 考试题目:70题 考试语言:英语 考试分数:66% 考试内容: 了解Oracle数据库体系结构 解释的内存 ...

  5. 初识shell脚本

    shell字符串.shell数组.shell echo指令.shell test命令.shell if语句.shell case语句.shell for语句.shell while语句.shell b ...

  6. 拥抱ARM妹子第二季 之 序:我和春天有个约会 - 生命的萌芽

      春姑年轻轻的吻了一下小穆妹纸的额头!从沉睡中苏醒的小穆妹纸,缓缓伸了个懒腰--- 啊-- 睡得真香! 等--等-等-!好像和童话故事里的情节不一样,应该由王子我来亲吻睡梦中的妹纸才能醒!!-- 强 ...

  7. php使用注意点

    php使用时间之前要将php.ini中时区设置好,否则会报警告.截图如下:“;date.timezone =”设置为“date.timezone =Asia/Shanghai”即可. apache如果 ...

  8. 快捷设置IE代理小工具

    时间:2015-02-06 起因: 公司新装了PLM系统,用这个系统必须使用指定IP段的IP才能访问.所以为了还能愉快的继续使用代理进行特定网站的访问,我们必须要频繁的去设置IE代理,这也太麻烦了吧. ...

  9. Tesseract初探

    一.框架介绍 Tesseract 是一款图片识别工具,可以抓取图片中的文字,可以支持多种语言(默认是英语),需要下载开源文件可以在github上下载,如果知识应用不想太多深究直接在google cod ...

  10. kruskal算法-Pascal

    马上就快要考试了,然而突然发现自己图论已经废了,于是再都打一遍练练手...... const maxn=; maxe=maxn*maxn; type edge=record //edge记录每一条边, ...