BZOJ3232: 圈地游戏
题解:
神题一道。。。
题解戳这里:http://hi.baidu.com/strongoier/item/0425f0e5814e010265db0095
分数规划可以看这里:http://blog.csdn.net/hhaile/article/details/8883652
无限orzzzzz
代码:实数网络流真蛋疼。。。
#include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> #include<vector> #include<map> #include<set> #include<queue> #include<string> #define inf 1000000000 #define maxn 200000+5 #define maxm 200000+5 #define eps 1e-10 #define ll long long #define pa pair<int,int> #define for0(i,n) for(int i=0;i<=(n);i++) #define for1(i,n) for(int i=1;i<=(n);i++) #define for2(i,x,y) for(int i=(x);i<=(y);i++) #define for3(i,x,y) for(int i=(x);i>=(y);i--) #define for4(i,x) for(int i=head[x],y;i;i=e[i].next) #define mod 1000000007 using namespace std; inline int read() { int x=,f=;char ch=getchar(); while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();} while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();} return x*f; }
int n,m,s,t,tot=,head[maxn],cur[maxn],h[maxn],num[][];
double maxflow,a[][][];
queue<int>q;
struct edge{int go,next;double v;}e[maxm];
inline void add(int x,int y,double v)
{
e[++tot]=(edge){y,head[x],v};head[x]=tot;
e[++tot]=(edge){x,head[y],};head[y]=tot;
}
bool bfs()
{
for(int i=s;i<=t;i++)h[i]=-;
q.push(s);h[s]=;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=head[x];i;i=e[i].next)
if(e[i].v>eps&&h[e[i].go]==-)
{
h[e[i].go]=h[x]+;q.push(e[i].go);
}
}
return h[t]!=-;
}
double dfs(int x,double f)
{
if(x==t) return f;
double tmp,used=0.0;
for(int i=cur[x];i;i=e[i].next)
if(e[i].v>eps&&h[e[i].go]==h[x]+)
{
tmp=dfs(e[i].go,min(e[i].v,f-used));
e[i].v-=tmp;if(e[i].v>eps)cur[x]=i;
e[i^].v+=tmp;used+=tmp;
if(fabs(used-f)<eps)return f;
}
if(used<eps) h[x]=-;
return used;
}
void dinic()
{
maxflow=0.0;
while(bfs())
{
for (int i=s;i<=t;i++)cur[i]=head[i];maxflow+=dfs(s,inf);
}
}
bool check(double mid)
{
double ret=0.0;
memset(head,,sizeof(head));tot=;
for0(i,n+)for0(j,m+)
if(i&&i<n+&&j&&j<m+)add(s,num[i][j],a[i][j][]),ret+=a[i][j][];
else add(num[i][j],t,inf);
for0(i,n)for1(j,m)add(num[i][j],num[i+][j],mid*a[i][j][]),add(num[i+][j],num[i][j],mid*a[i][j][]);
for1(i,n)for0(j,m)add(num[i][j],num[i][j+],mid*a[i][j][]),add(num[i][j+],num[i][j],mid*a[i][j][]);
dinic();
return ret-maxflow>1e-;
} int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); n=read();m=read();
for0(i,n+)for0(j,m+)num[i][j]=++tot;s=;t=++tot;
for1(i,n)for1(j,m)a[i][j][]=read();
for0(i,n)for1(j,m)a[i][j][]=read();
for1(i,n)for0(j,m)a[i][j][]=read();
double l=,r=n*m*;
while(r-l>1e-)
{
double mid=(l+r)/;
if(check(mid))l=mid;else r=mid;
}
printf("%.3f\n",l); return ; }
3232: 圈地游戏
Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 498 Solved: 248
[Submit][Status]
Description
Input
Output
Sample Input
1 3 3 3
1 3 1 1
3 3 1 0
100 1 1 1
97 96 1 1
1 93 92 92
1 1 90 90
98 1 99 99 1
95 1 1 1 94
1 91 1 1 89
Sample Output
HINT
Source
BZOJ3232: 圈地游戏的更多相关文章
- $BZOJ3232$ 圈地游戏 网络流
正解:最小割+01分数规划 解题报告: 传送门$QwQ$ 感$jio$这个好像是$NOIp2018$集训的时候$cjk$学长讲01分数规划的时候港的,,,?$QwQ$虽然我还是不会嘤 首先看到这个分数 ...
- bzoj3232圈地游戏——0/1分数规划+差分建模+判环
Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意一个格点出发,沿着格线行走直到 ...
- 【BZOJ3232】圈地游戏(分数规划,网络流)
[BZOJ3232]圈地游戏(分数规划,网络流) 题面 BZOJ 题解 很神仙的一道题. 首先看到最大化的比值很容易想到分数规划.现在考虑分数规划之后怎么计算贡献. 首先每条边的贡献就变成了\(mid ...
- 【BZOJ3232】圈地游戏 分数规划+最小割
[BZOJ3232]圈地游戏 Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意 ...
- bzoj 3232: 圈地游戏
bzoj 3232: 圈地游戏 01分数规划,就是你要最大化\(\frac{\sum A}{\sum B}\),就二分这个值,\(\frac{\sum A}{\sum B} \geq mid\) \( ...
- BZOJ 3232: 圈地游戏 分数规划+判负环
3232: 圈地游戏 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 966 Solved: 466[Submit][Status][Discuss] ...
- 【BZOJ 3232】圈地游戏 二分+SPFA判环/最小割经典模型
最小割经典模型指的是“一堆元素进行选取,对于某个元素的取舍有代价或价值,对于某些对元素,选取后会有额外代价或价值”的经典最小割模型,建立倒三角进行最小割.这个二分是显然的,一开始我也是想到了最小割的那 ...
- bzoj 3232: 圈地游戏 01分数规划
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3232 题解: 首先我们看到这道题让我们最优化一个分式. 所以我们应该自然而然地想到01分 ...
- bzoj 3232 圈地游戏——0/1分数规划(或网络流)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...
随机推荐
- Spark小课堂Week3 FirstSparkApp(Dataframe开发)
Spark小课堂Week3 FirstSparkApp(代码优化) RDD代码简化 对于昨天练习的代码,我们可以从几个方面来简化: 使用fluent风格写法,可以减少对于中间变量的定义. 使用lamb ...
- psp系统需求分析
软件开发方向“PSP系统”软件需求规约 目录 1 引言... 4 1.1 目的... 4 1.2 文档格式... 4 1.3 预期的读者和阅读建议... 4 1.4 范围... 5 1.5 术语... ...
- ARM-Linux S5PV210 UART驱动(4)----串口驱动初始化过程
对于S5PV210 UART驱动来说,主要关心的就是drivers/serial下的samsung.c和s5pv210.c连个文件. 由drivers/serial/Kconfig: config S ...
- 求小于等于n的所有素数
题目:要求输出所有小于等于n的素数(n>=2,且为正整数) 要求:1.每行输出10个素数 2.尽可能采用较优算法 #include<iostream> #include<cma ...
- FatMouse
时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:1431 解决:641 题目描述: FatMouse prepared M pounds of cat food, ready to t ...
- (转)《深入理解java虚拟机》学习笔记6——类加载机制
Java虚拟机类加载过程是把Class类文件加载到内存,并对Class文件中的数据进行校验.转换解析和初始化,最终形成可以被虚拟机直接使用的java类型的过程. 在加载阶段,java虚拟机需要完成以下 ...
- SQL Server数据库备份(本机)
基础的SQL Server数据库备份存储过程 /**************************************************************************** ...
- ViewData,ViewBag和TempData
ViewData ViewBag TempData 类型 字典 Dynamic TempDataDictionary 出生时间 MVC1 MVC3 框架版本 .net3.5 .net4.0 ...
- Lua基础之table详解
概要:1.table特性:2.table的构造:3.table常用函数:4.table遍历:5.table面向对象 原文地址:http://blog.csdn.net/dingkun520wy/art ...
- swift基础--字符串
(1)遍历 (2)长度 (3)拼接 (4)插值 (5)大小写 (6)trim (7)split ……等等 var a = "你好" var b = String() a.isEmp ...