题解:

神题一道。。。

题解戳这里:http://hi.baidu.com/strongoier/item/0425f0e5814e010265db0095

分数规划可以看这里:http://blog.csdn.net/hhaile/article/details/8883652

无限orzzzzz

代码:实数网络流真蛋疼。。。

 #include<cstdio>

 #include<cstdlib>

 #include<cmath>

 #include<cstring>

 #include<algorithm>

 #include<iostream>

 #include<vector>

 #include<map>

 #include<set>

 #include<queue>

 #include<string>

 #define inf 1000000000

 #define maxn 200000+5

 #define maxm 200000+5

 #define eps 1e-10

 #define ll long long

 #define pa pair<int,int>

 #define for0(i,n) for(int i=0;i<=(n);i++)

 #define for1(i,n) for(int i=1;i<=(n);i++)

 #define for2(i,x,y) for(int i=(x);i<=(y);i++)

 #define for3(i,x,y) for(int i=(x);i>=(y);i--)

 #define for4(i,x) for(int i=head[x],y;i;i=e[i].next)

 #define mod 1000000007

 using namespace std;

 inline int read()

 {

     int x=,f=;char ch=getchar();

     while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}

     while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}

     return x*f;

 }
int n,m,s,t,tot=,head[maxn],cur[maxn],h[maxn],num[][];
double maxflow,a[][][];
queue<int>q;
struct edge{int go,next;double v;}e[maxm];
inline void add(int x,int y,double v)
{
e[++tot]=(edge){y,head[x],v};head[x]=tot;
e[++tot]=(edge){x,head[y],};head[y]=tot;
}
bool bfs()
{
for(int i=s;i<=t;i++)h[i]=-;
q.push(s);h[s]=;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=head[x];i;i=e[i].next)
if(e[i].v>eps&&h[e[i].go]==-)
{
h[e[i].go]=h[x]+;q.push(e[i].go);
}
}
return h[t]!=-;
}
double dfs(int x,double f)
{
if(x==t) return f;
double tmp,used=0.0;
for(int i=cur[x];i;i=e[i].next)
if(e[i].v>eps&&h[e[i].go]==h[x]+)
{
tmp=dfs(e[i].go,min(e[i].v,f-used));
e[i].v-=tmp;if(e[i].v>eps)cur[x]=i;
e[i^].v+=tmp;used+=tmp;
if(fabs(used-f)<eps)return f;
}
if(used<eps) h[x]=-;
return used;
}
void dinic()
{
maxflow=0.0;
while(bfs())
{
for (int i=s;i<=t;i++)cur[i]=head[i];maxflow+=dfs(s,inf);
}
}
bool check(double mid)
{
double ret=0.0;
memset(head,,sizeof(head));tot=;
for0(i,n+)for0(j,m+)
if(i&&i<n+&&j&&j<m+)add(s,num[i][j],a[i][j][]),ret+=a[i][j][];
else add(num[i][j],t,inf);
for0(i,n)for1(j,m)add(num[i][j],num[i+][j],mid*a[i][j][]),add(num[i+][j],num[i][j],mid*a[i][j][]);
for1(i,n)for0(j,m)add(num[i][j],num[i][j+],mid*a[i][j][]),add(num[i][j+],num[i][j],mid*a[i][j][]);
dinic();
return ret-maxflow>1e-;
} int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); n=read();m=read();
for0(i,n+)for0(j,m+)num[i][j]=++tot;s=;t=++tot;
for1(i,n)for1(j,m)a[i][j][]=read();
for0(i,n)for1(j,m)a[i][j][]=read();
for1(i,n)for0(j,m)a[i][j][]=read();
double l=,r=n*m*;
while(r-l>1e-)
{
double mid=(l+r)/;
if(check(mid))l=mid;else r=mid;
}
printf("%.3f\n",l); return ; }

3232: 圈地游戏

Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 498  Solved: 248
[Submit][Status]

Description

DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用。
DZY喜欢在地里散步。他总是从任意一个格点出发,沿着格线行走直到回到出发点,且在行走途中不允许与已走过的路线有任何相交或触碰(出发点除外)。记这条封闭路线内部的格子总价值为V,路线上的费用总和为C,DZY想知道V/C的最大值是多少。

Input

第一行为两个正整数n,m。
接下来n行,每行m个非负整数,表示对应格子的价值。
接下来n+1行,每行m个正整数,表示所有横向的格线上的费用。
接下来n行,每行m+1个正整数,表示所有纵向的格线上的费用。
(所有数据均按从左到右,从上到下的顺序输入,参见样例和配图)

Output

 
输出一行仅含一个数,表示最大的V/C,保留3位小数。

Sample Input

3 4
1 3 3 3
1 3 1 1
3 3 1 0
100 1 1 1
97 96 1 1
1 93 92 92
1 1 90 90
98 1 99 99 1
95 1 1 1 94
1 91 1 1 89

Sample Output

1.286

HINT

Source

BZOJ3232: 圈地游戏的更多相关文章

  1. $BZOJ3232$ 圈地游戏 网络流

    正解:最小割+01分数规划 解题报告: 传送门$QwQ$ 感$jio$这个好像是$NOIp2018$集训的时候$cjk$学长讲01分数规划的时候港的,,,?$QwQ$虽然我还是不会嘤 首先看到这个分数 ...

  2. bzoj3232圈地游戏——0/1分数规划+差分建模+判环

    Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意一个格点出发,沿着格线行走直到 ...

  3. 【BZOJ3232】圈地游戏(分数规划,网络流)

    [BZOJ3232]圈地游戏(分数规划,网络流) 题面 BZOJ 题解 很神仙的一道题. 首先看到最大化的比值很容易想到分数规划.现在考虑分数规划之后怎么计算贡献. 首先每条边的贡献就变成了\(mid ...

  4. 【BZOJ3232】圈地游戏 分数规划+最小割

    [BZOJ3232]圈地游戏 Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意 ...

  5. bzoj 3232: 圈地游戏

    bzoj 3232: 圈地游戏 01分数规划,就是你要最大化\(\frac{\sum A}{\sum B}\),就二分这个值,\(\frac{\sum A}{\sum B} \geq mid\) \( ...

  6. BZOJ 3232: 圈地游戏 分数规划+判负环

    3232: 圈地游戏 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 966  Solved: 466[Submit][Status][Discuss] ...

  7. 【BZOJ 3232】圈地游戏 二分+SPFA判环/最小割经典模型

    最小割经典模型指的是“一堆元素进行选取,对于某个元素的取舍有代价或价值,对于某些对元素,选取后会有额外代价或价值”的经典最小割模型,建立倒三角进行最小割.这个二分是显然的,一开始我也是想到了最小割的那 ...

  8. bzoj 3232: 圈地游戏 01分数规划

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3232 题解: 首先我们看到这道题让我们最优化一个分式. 所以我们应该自然而然地想到01分 ...

  9. bzoj 3232 圈地游戏——0/1分数规划(或网络流)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...

随机推荐

  1. discuz X2.5自己写代码,获取当前登录的用户信息

    <? //这个只是获取当前用户账号以及积分的方法,同样你修改SQL语句可以实现discuz所有数据处理的功能 require '../source/class/class_core.php';/ ...

  2. 一个不错的图片滑动展示插件 anythingslider

    一个不错的图片http://css-tricks.com/anythingslider-jquery-plugin/ DEMO演示: http://css-tricks.github.io/Anyth ...

  3. XE5 ANDROID平台 调用 webservice

    服务端需要midas.dll   XE5对android的平台支持很有吸引力,虽然目前用来直接开发应用到安卓市场卖赚钱可能性估计不大(安卓市场目前国内好像都是免费的天下),但是对于企业应用很是很有帮助 ...

  4. (转)ASP.NET缓存全解析6:数据库缓存依赖

    ASP.NET缓存全解析文章索引 ASP.NET缓存全解析1:缓存的概述 ASP.NET缓存全解析2:页面输出缓存 ASP.NET缓存全解析3:页面局部缓存 ASP.NET缓存全解析4:应用程序数据缓 ...

  5. s3c2440之cache

    cache高速缓冲存储器注意与块设备页高速缓存进行区别,一个是硬件的实现一个是软件的实现,块设备页高速缓存. s3c2440/s3c2410里面主要有一个arm920t的核,但同时包含几个协处理器,协 ...

  6. [转]popwindow用法

    [转]弹出窗口的两种实现方式 PopupWindow 和 Activity  链接:http://www.cnblogs.com/winxiang/archive/2012/11/20/2778729 ...

  7. shell复习笔记----命令与参数

    shell最基本的工作就是执行命令. 每键入一道命令, shell 就会执行. $cd work;ls -l whizprog.c 首先:格式很简单,以空白(Space 键或者 Tab键)隔开命令行中 ...

  8. SQL的表连接

    每天给自己扫盲,让自己变得越博学. 继续学习<程序员的SQL金典>,这回我们来看看表连接相关的内容.表连接的相关知识在实际的项目开发当中,使用非常广. 所谓表连接,就是通过关联多张表,从而 ...

  9. VB断点大全

    MultiByteToWideChar, ANSI字符串转换成Unicode字符串WideCharToMultiByte, Unicode字符串转换成ANSI字符串 //--------------- ...

  10. 【leetcode】Word Ladder (hard) ★

    Given two words (start and end), and a dictionary, find the length of shortest transformation sequen ...