dict

Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。

举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:

names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]

给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长。

如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:

>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95

为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。

第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字,无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。

dict就是第二种实现方式,给定一个名字,比如'Michael',dict在内部就可以直接计算出Michael对应的存放成绩的“页码”,也就是95这个数字存放的内存地址,直接取出来,所以速度非常快。

你可以猜到,这种key-value存储方式,在放进去的时候,必须根据key算出value的存放位置,这样,取的时候才能根据key直接拿到value。

把数据放入dict的方法,除了初始化时指定外,还可以通过key放入:

>>> d['Adam'] = 67
>>> d['Adam']
67

由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:

>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88

如果key不存在,dict就会报错:

>>> d['Thomas']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'Thomas'

要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:

>>> 'Thomas' in d
False

二是通过dict提供的get方法,如果key不存在,可以返回None,或者自己指定的value:

>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1

注意:返回None的时候Python的交互式命令行不显示结果。

要删除一个key,用pop(key)方法,对应的value也会从dict中删除:

>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}

请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。

和list比较,dict有以下几个特点:

  1. 查找和插入的速度极快,不会随着key的增加而增加;
  2. 需要占用大量的内存,内存浪费多。

而list相反:

  1. 查找和插入的时间随着元素的增加而增加;
  2. 占用空间小,浪费内存很少。

所以,dict是用空间来换取时间的一种方法。

dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象

这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。

要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key:

>>> key = [1, 2, 3]
>>> d[key] = 'a list'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

set

set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。

要创建一个set,需要提供一个list作为输入集合:

>>> s = set([1, 2, 3])
>>> s
set([1, 2, 3])

注意,传入的参数[1, 2, 3]是一个list,而显示的set([1, 2, 3])只是告诉你这个set内部有1,2,3这3个元素,显示的[]不表示这是一个list。

重复元素在set中自动被过滤:

>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
set([1, 2, 3])

通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:

>>> s.add(4)
>>> s
set([1, 2, 3, 4])
>>> s.add(4)
>>> s
set([1, 2, 3, 4])

通过remove(key)方法可以删除元素:

>>> s.remove(4)
>>> s
set([1, 2, 3])

set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:

>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
set([2, 3])
>>> s1 | s2
set([1, 2, 3, 4])

set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。试试把list放入set,看看是否会报错。

再议不可变对象

上面我们讲了,str是不变对象,而list是可变对象。

对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:

>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']

而对于不可变对象,比如str,对str进行操作呢:

>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'

虽然字符串有个replace()方法,也确实变出了'Abc',但变量a最后仍是'abc',应该怎么理解呢?

我们先把代码改成下面这样:

>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'

要始终牢记的是,a是变量,而'abc'才是字符串对象!有些时候,我们经常说,对象a的内容是'abc',但其实是指,a本身是一个变量,它指向的对象的内容才是'abc'

当我们调用a.replace('a', 'A')时,实际上调用方法replace是作用在字符串对象'abc'上的,而这个方法虽然名字叫replace,但却没有改变字符串'abc'的内容。相反,replace方法创建了一个新字符串'Abc'并返回,如果我们用变量b指向该新字符串,就容易理解了,变量a仍指向原有的字符串'abc',但变量b却指向新字符串'Abc'了:

所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可变的。

小结

使用key-value存储结构的dict在Python中非常有用,选择不可变对象作为key很重要,最常用的key是字符串。

tuple虽然是不变对象,但试试把(1, 2, 3)(1, [2, 3])放入dict或set中,并解释结果。

python 使用dict和set的更多相关文章

  1. Python中dict的特点、更新dict、遍历dict

    dict的第一个特点是查找速度快,无论dict有10个元素还是10万个元素,查找速度都一样.而list的查找速度随着元素增加而逐渐下降. 不过dict的查找速度快不是没有代价的,dict的缺点是占用内 ...

  2. Python中dict详解

    from:http://www.cnblogs.com/yangyongzhi/archive/2012/09/17/2688326.html Python中dict详解 python3.0以上,pr ...

  3. python 字典 dict 该注意的一些操作

    在用python处理dict 的时候,有几个该注意的地方,这里跟大家提一下: 1)操作dict 时,尽量少产生新的列表对象.比如: 遍历dict的时候,如果用 dic = {"a" ...

  4. python字典dict的增、删、改、查操作

    ## python字典dict的增.删.改.查操作dict = {'age': 18, 'name': 'jin', 'sex': 'male', }#增# dict['heigh'] = 185 # ...

  5. Python 字典 dict() 函数

    描述 Python 字典 dict() 函数用于创建一个新的字典,用法与 Pyhon 字典 update() 方法相似. 语法 dict() 函数函数语法: dict(key/value) 参数说明: ...

  6. Python 基础 Dict 和 Set 类型

    python 什么是dict 例如: d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 } 我们把名称称为key,对应的成绩称为value,dic就是通过key 来查找 ...

  7. python实现dict版图遍历

    python实现dict版图遍历的示例. 代码: #_*_coding:utf_8_import sysimport osclass Graph(): def __init__(self, V, E) ...

  8. Python之Dict和Set类型(入门5)

    转载请标明出处: http://www.cnblogs.com/why168888/p/6407905.html 本文出自:[Edwin博客园] Python之Dict和Set类型 1. Python ...

  9. 'dict_values' object does not support indexing, Python字典dict中由value查key

    Python字典dict中由value查key 众所周知,字典dict最大的好处就是查找或插入的速度极快,并且不想列表list一样,随着key的增加越来越复杂.但是dict需要占用较大的内存空间,换句 ...

  10. Python的dict字典结构操作方法学习笔记

    Python的dict字典结构操作方法学习笔记 这篇文章主要介绍了Python的dict字典结构操作方法学习笔记本,字典的操作是Python入门学习中的基础知识,需要的朋友可以参考下 一.字典的基本方 ...

随机推荐

  1. 李洪强iOS开发之【零基础学习iOS开发】【02-C语言】07-基本数据类型

    C语言有丰富的数据类型,因此它很适合用来编写数据库,如DB2.Oracle等大型数据库都是C语言写的.其中,提供了4种最常用的基本数据类型:char.int.float.double,使用这些数据类型 ...

  2. [topcoder]ZigZag

    http://community.topcoder.com/stat?c=problem_statement&pm=1259&rd=4493 动态规划题.如果不用DP,暴力的应当在2^ ...

  3. live555源码研究(五)------DynamicRTSPServer类

    一.类DynamicRTSPServer作用 1,提供RTSP服务 二.类DynamicRTSPServer继承关系图

  4. Razor视图引擎布局

    不需要像过去aspx一样,使用.Master文件,而是统一使用.cshtml 或 .vbhtml文件.但文件名一般以 _开头,这样做文件不会当做View显示出来 使用@RenderBody() 表示替 ...

  5. SQL Server Mobile 和 .NET 数据访问接口之间的数据类型映射

      .NET 数据类型 SQL Server Mobile 数据类型 binary varbinary boolean bit byte tinyint byte[] varbinary dateti ...

  6. 最短路径算法之一——Floyd算法

    Floyd算法 Floyd算法可以用来解决任意两个顶点之间的最短路径问题. 核心公式为: Edge[i][j]=Min{Edge[i][j],Edge[i][k]+Edge[k][j]}. 即通过对i ...

  7. HDU1535——Invitation Cards(最短路径:SPAF算法+dijkstra算法)

    Invitation Cards DescriptionIn the age of television, not many people attend theater performances. A ...

  8. sqlserver查询指定树形结构的所有子节点

    用标准sql的with实现递归查询(sql2005以上肯定支持,sql2000不清楚是否支持): with subqry(id,name,pid) as ( select id,name,pid fr ...

  9. 有关PHP 10条有用的建议

    1.使用ip2long() 和long2ip()函数来把IP地址转化成整型存储到数据库里. 这种方法把存储空间降到了接近四分之一(char(15)的15个字节对整形的4个字节),计算一个特定的地址是不 ...

  10. 50个非常有用的PHP工具

    PHP是使用最为广泛的开源服务器端脚本语言之一,当然PHP并不是速度最快的,但它却是最常用的脚本语言.这里有50个有益的PHP工具,可以大大提高你的编程工作: 调试工具 Webgrind Xdebug ...