C. Wilbur and Points
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Wilbur is playing with a set of n points on the coordinate plane. All points have non-negative integer coordinates. Moreover, if some point (x, y) belongs to the set, then all points (x', y'), such that 0 ≤ x' ≤ x and 0 ≤ y' ≤ y also belong to this set.

Now Wilbur wants to number the points in the set he has, that is assign them distinct integer numbers from 1 to n. In order to make the numbering aesthetically pleasing, Wilbur imposes the condition that if some point (x, y) gets number i, then all (x',y') from the set, such that x' ≥ x and y' ≥ y must be assigned a number not less than i. For example, for a set of four points (0, 0), (0, 1), (1, 0) and (1, 1), there are two aesthetically pleasing numberings. One is 1, 2, 3, 4 and another one is 1, 3, 2, 4.

Wilbur's friend comes along and challenges Wilbur. For any point he defines it's special value as s(x, y) = y - x. Now he gives Wilbur some w1, w2,..., wn, and asks him to find an aesthetically pleasing numbering of the points in the set, such that the point that gets number i has it's special value equal to wi, that is s(xi, yi) = yi - xi = wi.

Now Wilbur asks you to help him with this challenge.

Input

The first line of the input consists of a single integer n (1 ≤ n ≤ 100 000) — the number of points in the set Wilbur is playing with.

Next follow n lines with points descriptions. Each line contains two integers x and y (0 ≤ x, y ≤ 100 000), that give one point in Wilbur's set. It's guaranteed that all points are distinct. Also, it is guaranteed that if some point (x, y) is present in the input, then all points (x', y'), such that 0 ≤ x' ≤ x and 0 ≤ y' ≤ y, are also present in the input.

The last line of the input contains n integers. The i-th of them is wi ( - 100 000 ≤ wi ≤ 100 000) — the required special value of the point that gets number i in any aesthetically pleasing numbering.

Output

If there exists an aesthetically pleasant numbering of points in the set, such that s(xi, yi) = yi - xi = wi, then print "YES" on the first line of the output. Otherwise, print "NO".

If a solution exists, proceed output with n lines. On the i-th of these lines print the point of the set that gets number i. If there are multiple solutions, print any of them.

Sample test(s)
Input
5
2 0
0 0
1 0
1 1
0 1
0 -1 -2 1 0
Output
YES
0 0
1 0
2 0
0 1
1 1
Input
3
1 0
0 0
2 0
0 1 2
Output
NO
Note

In the first sample, point (2, 0) gets number 3, point (0, 0) gets number one, point (1, 0) gets number 2, point (1, 1) gets number 5 and point (0, 1) gets number 4. One can easily check that this numbering is aesthetically pleasing and yi - xi = wi.

In the second sample, the special values of the points in the set are 0,  - 1, and  - 2 while the sequence that the friend gives to Wilbur is 0, 1, 2. Therefore, the answer does not exist.

昏了头,做的时候想太多了.

先把a[i].y-a[i].x的数存进一个vector然后对于每个D[I],依次判断。

比如:对于D[I],如果V[D[I]].size==0那么输出”NO“;

V[D[I]]内部是按照先x,y排序的。

最后再判断一遍是否合法;

 #include<bits/stdc++.h>

 using namespace std;
typedef long long ll; #define N 211111 struct node
{
int x,y,id;
node(int _x=,int _y=,int _z=)
{
x=_x;
y=_y;
id=_z;
}
}a[N];
int d[N],ans[N];
vector<node>b[N+N]; int cmp(node a,node b)
{
// min(a.x,a.y)<min(b.x,b.y);
if (a.x==b.x) return a.y<b.y;
return a.x<b.x;
} int main()
{
int n;
cin>>n;
for (int i=;i<=n;i++)
{
cin>>a[i].x>>a[i].y;
b[a[i].y-a[i].x+N].push_back(node(a[i].x,a[i].y,i));//要先+N,因为可能为负数
} for (int i=;i<=n;i++)
{
cin>>d[i];
d[i]+=N; if (b[d[i]].size()==)
{
cout<<"NO";
return ;
}
sort(b[d[i]].begin(),b[d[i]].end(),cmp);//每次都排序 是有点费时间
ans[i]=(*b[d[i]].begin()).id;
b[d[i]].erase(b[d[i]].begin());
} for (int i=;i<n;i++)
if (a[ans[i+]].x<=a[ans[i]].x&&a[ans[i+]].y<=a[ans[i]].y)//这里必须是<=,可能需要想想
{
cout<<"NO";
return ;
} cout<<"YES"<<endl;
for (int i=;i<=n;i++)
cout<<a[ans[i]].x<<" "<<a[ans[i]].y<<endl;
return ;
}

Codeforces Round #331 (Div. 2) C. Wilbur and Points的更多相关文章

  1. Codeforces Round #331 (Div. 2)C. Wilbur and Points 贪心

    C. Wilbur and Points Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/596/ ...

  2. Codeforces Round #331 (Div. 2) E. Wilbur and Strings dfs乱搞

    E. Wilbur and Strings Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/596 ...

  3. Codeforces Round #331 (Div. 2) D. Wilbur and Trees 记忆化搜索

    D. Wilbur and Trees Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/596/p ...

  4. Codeforces Round #331 (Div. 2) B. Wilbur and Array 水题

    B. Wilbur and Array Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/596/p ...

  5. Codeforces Round #331 (Div. 2) A. Wilbur and Swimming Pool 水题

    A. Wilbur and Swimming Pool Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/conte ...

  6. Codeforces Round #331 (Div. 2) _A. Wilbur and Swimming Pool

    A. Wilbur and Swimming Pool time limit per test 1 second memory limit per test 256 megabytes input s ...

  7. Codeforces Round #331 (Div. 2) B. Wilbur and Array

    B. Wilbur and Array time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  8. Codeforces Round #331 (Div. 2)

    水 A - Wilbur and Swimming Pool 自从打完北京区域赛,对矩形有种莫名的恐惧.. #include <bits/stdc++.h> using namespace ...

  9. Codeforces Round #331 (Div. 2) A

    A. Wilbur and Swimming Pool time limit per test 1 second memory limit per test 256 megabytes input s ...

随机推荐

  1. POJ 3164 Command Network 最小树形图模板

    最小树形图求的是有向图的最小生成树,跟无向图求最小生成树有很大的区别. 步骤大致如下: 1.求除了根节点以外每个节点的最小入边,记录前驱 2.判断除了根节点,是否每个节点都有入边,如果存在没有入边的点 ...

  2. 基础面试题——Javascript

    1.介绍js的基本数据类型 Undefined.Null.Boolean.Number.String 2.js有哪些内置对象? 数据封装类对象:Object.Array.Boolean.Number ...

  3. 用viewpager实现图片轮播

    应用中常常遇到图片轮播的需求,这时候就需要用到viewpager这个组件.viewpager是android support v4 中提供的一个组件.viewpager使用需要以下几步骤: 1.在布局 ...

  4. 各种LICENSE的作用--GET

    许 多开发者和设计者希望把他们的作品作为开源项目共享,他们希望其他人能够利用和共享他们的代码. 而各种开源社区就是因为这个原因而充满活力.开源软件可以用于你能想象得到的任何应用程序,许多web设计人员 ...

  5. Part 10 Stored procedures in sql server

    Stored procedures in sql server Stored procedures with output parameters Stored procedure output par ...

  6. SQL Server 2000中的完整备份、差异备份操作

    在SQL Server 2000中,假定我们拥有一个数据库为:Test, 现在需要它每天19:00自动进行一次备份,并且以后一旦发生数据库错误,我们都可以通过备份文件将数据库恢复到任何一个备份过的时刻 ...

  7. UI2_QQ折叠-UITableViewController

    // CustomUITableViewController.h // UI2_QQ折叠-UITableViewController // // Created by zhangxueming on ...

  8. Toad for Oracle Authorization key

    Authorization key :    0-63920-00993-29060-08749 sit         message  :     li

  9. 济南学习 Day 4 T2 am

    LYK 与实验室(lab)Time Limit:5000ms Memory Limit:64MB题目描述LYK 在一幢大楼里,这幢大楼共有 n 层,LYK 初始时在第 a 层上.这幢大楼有一个秘密实验 ...

  10. ASCII 码表

    下面的 ASCII 码表包含数值在0-127之间的字符的十进制.八进制以及十六进制表示. 十进制 八进制 十六进制 字符 描述 0 0 00 NUL   1 1 01 SOH start of hea ...