cdoj 574 High-level ancients dfs序+线段树
High-level ancients
Time Limit: 20 Sec
Memory Limit: 256 MB
题目连接
http://acm.uestc.edu.cn/#/problem/show/574
Description
Love8909 is keen on the history of Kingdom ACM. He admires the heroic undertakings of Lxhgww and Haibo. Inspired by those sagas, Love8909 picked up his courage and tried to build up his own kingdom. He named it as A230.
After hard working for several years, Love8909 is about to fulfill his dream. However, there is still one thing to do: setting up the defense network. As Kingdom EDC looks at territory and people of A230 fiercely as a tiger does, Love8909 has to make it as soon as possible.
The defense network Love8909 wants to use is the same as the one used by Lxhgww and Haibo. He also connects all cities with roads which form a tree structure, and the capital city is City 1, which is the root of this tree. Love8909 sends commands to inform cities to add soldiers. The command, being same to those of the ancients, with two values, X and K, means sending K soldiers to City X, sending K+1 soldiers to sons of City X, sending K+2 soldiers to sons of sons of City X and so on. Initially there are no soldiers in any city.

Love8909 may adjust the arrangement of soldiers ever and again. He asks questions about how many soldiers in the subtree rooted at City X. A subtree rooted at City X includes City X itself and all of its descendants. As Love8909's military counselor, you are responsible to complete all his commands and answer his questions.
Input
The first line of the input will be an integer T (T≤20) indicating the number of cases.
For each case, the first line contains two integers: N P, representing the number of cities in A230 and number of operations given by love8909.
The next line lists N−1 integers, in which the ith number, denoted as Xi+1, represents there is a road from City Xi+1 to City i+1. Note that the City 1has been omitted. 1≤Xi+1≤N for 2≤i≤N.
Then P lines follow, each gives an operation. Each operation belongs to either kind:
A X K. An adding-soldier command.Q X. A question about how many soldiers in the subtree rooted at City X.
We guarantee that the cities form a rooted tree and the root is at City 1, which is the capital.
1≤N≤50000, 1≤P≤100000, 1≤X≤N, 0≤K≤1000.
Output
For each case, print Case #k: first in a single line, in which k represents the case number which starts from 1. Then for each Query X operation, print the answer in a single line.
Sample Input
1
7 10
1 1 2 2 5 5
Q 1
A 2 1
Q 1
Q 2
Q 5
A 5 0
Q 5
A 3 1
Q 1
Q 2
Sample Output
Case #1:
0
11
11
8
10
14
13
HINT
题意
给你一棵以1为根的树,有两个操作
1.A x k,让x增加k,x的儿子增加k+1,x的孙子增加k+2....x的t代儿子增加k+t
2.Q x , 查询x的子树的权值和是多少
题解:
看到处理子树问题,很显然的dfs序
dfs离散之后,维护线段树区间和,区间更新
我们很容易看出,他的更新是和deep有关的,deep越深的,更新越大
那么我们对于每个节点i,先区间更新y-deep[x],然后再使得更新一次,使得每个节点i增加deep[i]就好了
这样每个属于x的子树的都更新了 y - deep[x] + deep[i]
代码:
#include<iostream>
#include<stdio.h>
#include<vector>
using namespace std;
#define maxn 100010
struct Node
{
int l,r,d,val;
};
Node node[maxn];
vector<int>Q[maxn];
int TTT[maxn];
int cnt = ;
void dfs(int x,int fa,int d)
{
node[x].l = cnt;
node[x].d = d;
TTT[cnt]=x;
cnt++;
for(int i=;i<Q[x].size();i++)
{
int v = Q[x][i];
if(v==fa)continue;
dfs(v,x,d+);
}
node[x].r = cnt;
}
int d[maxn];
struct Seg
{
typedef long long SgTreeDataType;
struct treenode
{
int L , R ;
SgTreeDataType sum , lazy1 , lazy2;
}; treenode tree[maxn*]; inline void push_down(int o)
{
SgTreeDataType lazyval1 = tree[o].lazy1;
SgTreeDataType lazyval2 = tree[o].lazy2;
if(lazyval1==&&lazyval2==)return;
int L = tree[o].L , R = tree[o].R;
int mid = (L+R)/;
tree[*o].lazy1+=lazyval1;tree[*o].sum+=lazyval1*(mid-L+);
tree[*o+].lazy1+=lazyval1;tree[*o+].sum+=lazyval1*(R-mid); tree[*o].lazy2+=lazyval2;tree[*o].sum+=lazyval2*d[*o];
tree[*o+].lazy2+=lazyval2;tree[*o+].sum+=lazyval2*d[*o+];
tree[o].lazy1 = tree[o].lazy2 = ;
} inline void push_up(int o)
{
tree[o].sum = tree[*o].sum + tree[*o+].sum;
} inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R,tree[o].sum = tree[o].lazy1 = tree[o].lazy2 = ;
if(L==R)
d[o]=node[TTT[L]].d;
if (R > L)
{
int mid = (L+R) >> ;
build_tree(L,mid,o*);
build_tree(mid+,R,o*+);
d[o]=d[o*]+d[o*+];
}
} inline void updata1(int QL,int QR,SgTreeDataType v,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR)
{
tree[o].lazy1 += v;
tree[o].sum += v * (R-L+);
}
else
{
push_down(o);
int mid = (L+R)>>;
if (QL <= mid) updata1(QL,QR,v,o*);
if (QR > mid) updata1(QL,QR,v,o*+);
push_up(o);
}
} inline void updata2(int QL,int QR,SgTreeDataType v,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR)
{
tree[o].lazy2+=v;
tree[o].sum+=v*d[o];
}
else
{
push_down(o);
int mid = (L+R)>>;
if (QL <= mid) updata2(QL,QR,v,o*);
if (QR > mid) updata2(QL,QR,v,o*+);
push_up(o);
}
} inline SgTreeDataType query(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) return tree[o].sum;
else
{
push_down(o);
int mid = (L+R)>>;
SgTreeDataType res = ;
if (QL <= mid) res += query(QL,QR,*o);
if (QR > mid) res += query(QL,QR,*o+);
push_up(o);
return res;
}
}
}T; int main()
{
int t;scanf("%d",&t);
for(int cas=;cas<=t;cas++)
{
printf("Case #%d:\n",cas);
int n,q;
scanf("%d%d",&n,&q);
for(int i=;i<=n;i++)Q[i].clear(),node[i].val=;
cnt = ;
for(int i=;i<=n;i++)
{
int x,y;scanf("%d",&x);
y=i;
Q[x].push_back(y);
Q[y].push_back(x);
}
dfs(,-,);
T.build_tree(,n,);
string ch;
while(q--)
{
cin>>ch;
if(ch[]=='Q')
{
int x;scanf("%d",&x);
printf("%lld\n",T.query(node[x].l,node[x].r-,));
}
else
{
int x,y;scanf("%d%d",&x,&y);
T.updata1(node[x].l,node[x].r-,y-node[x].d,);
T.updata2(node[x].l,node[x].r-,,);
}
}
}
}
cdoj 574 High-level ancients dfs序+线段树的更多相关文章
- cdoj 574 High-level ancients dfs序+线段树 每个点所加权值不同
High-level ancients Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/s ...
- Educational Codeforces Round 6 E dfs序+线段树
题意:给出一颗有根树的构造和一开始每个点的颜色 有两种操作 1 : 给定点的子树群体涂色 2 : 求给定点的子树中有多少种颜色 比较容易想到dfs序+线段树去做 dfs序是很久以前看的bilibili ...
- 【BZOJ-3252】攻略 DFS序 + 线段树 + 贪心
3252: 攻略 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 339 Solved: 130[Submit][Status][Discuss] D ...
- Codeforces 343D Water Tree(DFS序 + 线段树)
题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...
- BZOJ2434 [Noi2011]阿狸的打字机(AC自动机 + fail树 + DFS序 + 线段树)
题目这么说的: 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母.经阿狸研究发现,这个打字机是这样工作的: 输入小 ...
- POJ 3321 DFS序+线段树
单点修改树中某个节点,查询子树的性质.DFS序 子树序列一定在父节点的DFS序列之内,所以可以用线段树维护. 1: /* 2: DFS序 +线段树 3: */ 4: 5: #include < ...
- 【XSY2667】摧毁图状树 贪心 堆 DFS序 线段树
题目大意 给你一棵有根树,有\(n\)个点.还有一个参数\(k\).你每次要删除一条长度为\(k\)(\(k\)个点)的祖先-后代链,问你最少几次删完.现在有\(q\)个询问,每次给你一个\(k\), ...
- F - Change FZU - 2277 (DFS序+线段树)
题目链接: F - Change FZU - 2277 题目大意: 题意: 给定一棵根为1, n个结点的树. 有q个操作,有两种不同的操作 (1) 1 v k x : a[v] += x, a[v ' ...
- BZOJ4551[Tjoi2016&Heoi2016]树——dfs序+线段树/树链剖分+线段树
题目描述 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下 两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记,其他结点均 ...
随机推荐
- mysql大内存高性能优化方案
mysql优化是一个相对来说比较重要的事情了,特别像对mysql读写比较多的网站就显得非常重要了,下面我们来介绍mysql大内存高性能优化方案 8G内存下MySQL的优化 按照下面的设置试试看:key ...
- ios 照片编辑的view封装
转:http://www.cnblogs.com/xiaobaizhu/archive/2013/07/03/3170101.html 该控件有旋转,缩放,拖动,剪裁的功能,封装成了一个ImageCr ...
- wifi详解(二)
1 Wifi模块解析和启动流程 1.1 框架分析 WIFI整体框架如图所示: 首先,用户程序使用WifiManager类来管理Wifi模块,它能够获得Wifi模块的状态,配置和 ...
- 【c++内存分布系列】单独一个类
首先要明确类型本身是没有具体地址的,它是为了给编译器生成相应对象提供依据.只有编译器生成的对象才有明确的地址. 一.空类 形如下面的类A,类里没有任何成员变量,类的sizeof值为1. #includ ...
- linux常用命令之--文本编辑和文本内容查看命令
linux的文本编辑和文本内容查看命令 1.文本编辑命令 vi:用于编辑文本文件,基本上可以分为三种模式,分别是一般模式.编辑模式.命令行模式. 一般模式:当编辑一个文件时,刚进入文件就是一般模式. ...
- 个人经验 - Android的RelativeLayout布局的layout_height属性设置为wrap_content时的坑
Android的RelativeLayout布局的layout_height属性设置为wrap_content时的坑: 此坑出现的条件: 1.RelativeLayout布局的layout_heigh ...
- ARM处理机模式--内部寄存器
处理器模式 用户模式(user)简称usr 快速中断模式(FIQ)简称fiq 外部中断模式(IRQ)简称irq 特权模式(supervisor)简称sve 数据访问终止模式(abort)简称abt 未 ...
- log4net 动态设定日志文件名
参考文章: http://blog.csdn.net/haoxiaozigang1/article/details/16343303 通过这个篇文章的方法,只能修改文件的路径,文件名并没有修改 参考文 ...
- 在ASP.NET下做了一个实验MVC的小东西
星期五下班前一时兴起,对MVC发表了一点看法.后来就想干脆弄个小东西来验证一些自己的想法帮组理清思路.所要源代码的免了,3个小时的急就章实在是乱得可以,既没有好的架构,也没有任何代码质量可言,主要是实 ...
- 产品设计敏感度之kindle touch 4
这种训练方法来自于<嵌入式系统开发之道:菜鸟成长日志与项目经理的私房菜>,名字真够长的,但是里面都是干货,我虽然之前有短评这本书,但是后面看完之后会继续再做一个详细的感悟记录. 选出身边的 ...