互斥锁

 #include <cstdio>

 #include <cstdlib>

 #include <unistd.h>

 #include <pthread.h>

 #include "iostream"

 using namespace std;

 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

 int tmp;

 void* thread(void *arg)

 {

     cout << "thread id is " << pthread_self() << endl;

     pthread_mutex_lock(&mutex);

     tmp = ;

     cout << "Now a is " << tmp << endl;

     pthread_mutex_unlock(&mutex);

     return NULL;

 }

 int main()

 {

     pthread_t id;

     cout << "main thread id is " << pthread_self() << endl;

     tmp = ;

     cout << "In main func tmp = " << tmp << endl;

     if (!pthread_create(&id, NULL, thread, NULL))

     {

         cout << "Create thread success!" << endl;

     }

     else

     {

         cout << "Create thread failed!" << endl;

     }

     pthread_join(id, NULL);

     pthread_mutex_destroy(&mutex);

     return ;

 }

 //编译:g++ -o thread testthread.cpp -lpthread

条件变量

#include <stdio.h>

#include <pthread.h>

#include "stdlib.h"

#include "unistd.h"

pthread_mutex_t mutex;

pthread_cond_t cond;

void hander(void *arg)

{

    free(arg);

    (void)pthread_mutex_unlock(&mutex);

}

void *thread1(void *arg)

{

    pthread_cleanup_push(hander, &mutex);

    while()

    {

        printf("thread1 is running\n");

        pthread_mutex_lock(&mutex);

        pthread_cond_wait(&cond, &mutex);

        printf("thread1 applied the condition\n");

        pthread_mutex_unlock(&mutex);

        sleep();

    }

    pthread_cleanup_pop();

}

void *thread2(void *arg)

{

    while()

    {

        printf("thread2 is running\n");

        pthread_mutex_lock(&mutex);

        pthread_cond_wait(&cond, &mutex);

        printf("thread2 applied the condition\n");

        pthread_mutex_unlock(&mutex);

        sleep();

    }

}

int main()

{

    pthread_t thid1,thid2;

    printf("condition variable study!\n");

    pthread_mutex_init(&mutex, NULL);

    pthread_cond_init(&cond, NULL);

    pthread_create(&thid1, NULL, thread1, NULL);

    pthread_create(&thid2, NULL, thread2, NULL);

    sleep();

    do

    {

        pthread_cond_signal(&cond);

    }while();

    sleep();

    pthread_exit();

    return ;

}
#include <pthread.h>

#include <unistd.h>

#include "stdio.h"

#include "stdlib.h"

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

struct node

{

    int n_number;

    struct node *n_next;

}*head = NULL;

static void cleanup_handler(void *arg)

{

    printf("Cleanup handler of second thread./n");

    free(arg);

    (void)pthread_mutex_unlock(&mtx);

}

static void *thread_func(void *arg)

{

    struct node *p = NULL;

    pthread_cleanup_push(cleanup_handler, p);

    while ()

    {

        //这个mutex主要是用来保证pthread_cond_wait的并发性

        pthread_mutex_lock(&mtx);

        while (head == NULL)

        {

            //这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何

            //这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线

            //程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。

            //这个时候,应该让线程继续进入pthread_cond_wait

            // pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,

            //然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立

            //而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx);,再读取资源

            //用这个流程是比较清楚的

            pthread_cond_wait(&cond, &mtx);

            p = head;

            head = head->n_next;

            printf("Got %d from front of queue/n", p->n_number);

            free(p);

        }

        pthread_mutex_unlock(&mtx); //临界区数据操作完毕,释放互斥锁

    }

    pthread_cleanup_pop();

    return ;

}

int main(void)

{

    pthread_t tid;

    int i;

    struct node *p;

    //子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,而

    //不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大

    pthread_create(&tid, NULL, thread_func, NULL);

    sleep();

    for (i = ; i < ; i++)

    {

        p = (struct node*)malloc(sizeof(struct node));

        p->n_number = i;

        pthread_mutex_lock(&mtx); //需要操作head这个临界资源,先加锁,

        p->n_next = head;

        head = p;

        pthread_cond_signal(&cond);

        pthread_mutex_unlock(&mtx); //解锁

        sleep();

    }

    printf("thread 1 wanna end the line.So cancel thread 2./n");

    //关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,退出

    //线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。

    pthread_cancel(tid);

    pthread_join(tid, NULL);

    printf("All done -- exiting/n");

    return ;

}

信号量

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

#include <semaphore.h>

#include <errno.h>

#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}

typedef struct _PrivInfo

{

    sem_t s1;

    sem_t s2;

    time_t end_time;

}PrivInfo;

static void info_init (PrivInfo* thiz);

static void info_destroy (PrivInfo* thiz);

static void* pthread_func_1 (PrivInfo* thiz);

static void* pthread_func_2 (PrivInfo* thiz);

int main (int argc, char** argv)

{

    pthread_t pt_1 = ;

    pthread_t pt_2 = ;

    int ret = ;

    PrivInfo* thiz = NULL;

    thiz = (PrivInfo* )malloc (sizeof (PrivInfo));

    if (thiz == NULL)

    {

        printf ("[%s]: Failed to malloc priv./n");

        return -;

    }

    info_init (thiz);

    ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);

    if (ret != )

    {

        perror ("pthread_1_create:");

    }

    ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);

    if (ret != )

    {

        perror ("pthread_2_create:");

    }

    pthread_join (pt_1, NULL);

    pthread_join (pt_2, NULL);

    info_destroy (thiz);

    return ;

}

static void info_init (PrivInfo* thiz)

{

    return_if_fail (thiz != NULL);

    thiz->end_time = time(NULL) + ;

    sem_init (&thiz->s1, , );

    sem_init (&thiz->s2, , );

    return;

}

static void info_destroy (PrivInfo* thiz)

{

    return_if_fail (thiz != NULL);

    sem_destroy (&thiz->s1);

    sem_destroy (&thiz->s2);

    free (thiz);

    thiz = NULL;

    return;

}

static void* pthread_func_1 (PrivInfo* thiz)

{

    return_if_fail(thiz != NULL);

    while (time(NULL) < thiz->end_time)

    {

        sem_wait (&thiz->s2);

        printf ("pthread1: pthread1 get the lock./n");

        sem_post (&thiz->s1);

        printf ("pthread1: pthread1 unlock/n");

        sleep ();

    }

    return;

}

static void* pthread_func_2 (PrivInfo* thiz)

{

    return_if_fail (thiz != NULL);

    while (time (NULL) < thiz->end_time)

    {

        sem_wait (&thiz->s1);

        printf ("pthread2: pthread2 get the unlock./n");

        sem_post (&thiz->s2);

        printf ("pthread2: pthread2 unlock./n");

        sleep ();

    }

    return;

}

总结:

互斥锁是是访问共享变量的,防止多线程同时写出现脏数据。

信号量是用来线程同步的,可两线程双向互相通知,也可单向通知。

条件变量是信号量的一种封装,用于线程单向等待另一个线程的通知,也可先后多个线程等待同一个条件变量的唤醒。

参考资料:https://blog.csdn.net/zsf8701/article/details/7844316

Linux 线程同步的三种方法(互斥锁、条件变量、信号量)的更多相关文章

  1. 【转】 Linux 线程同步的三种方法

    线程的最大特点是资源的共享性,但资源共享中的同步问题是多线程编程的难点.linux下提供了多种方式来处理线程同步,最常用的是互斥锁.条件变量和信号量. 一.互斥锁(mutex) 通过锁机制实现线程间的 ...

  2. Java中实现线程同步的三种方法

    实现同步的三种方法 多线程共享数据时,会发生线程不安全的情况,多线程共享数据必须同步. 实现同步的三种方法: 使用同步代码块 使用同步方法 使用互斥锁ReetrantLock(更灵活的代码控制) 代码 ...

  3. java多线程二之线程同步的三种方法

          java多线程的难点是在:处理多个线程同步与并发运行时线程间的通信问题.java在处理线程同步时,常用方法有: 1.synchronized关键字. 2.Lock显示加锁. 3.信号量Se ...

  4. JAVA之线程同步的三种方法

    最近接触到一个图片加载的项目,其中有声明到的线程池等资源需要在系统中线程共享,所以就去研究了一下线程同步的知识,总结了三种常用的线程同步的方法,特来与大家分享一下.这三种方法分别是:synchroni ...

  5. C++11 多线程同步 互斥锁 条件变量

    在多线程程序中,线程同步(多个线程访问一个资源保证顺序)是一个非常重要的问题,Linux下常见的线程同步的方法有下面几种: 互斥锁 条件变量 信号量 这篇博客只介绍互斥量和条件变量的使用. 互斥锁和条 ...

  6. linux c 线程间同步(通信)的几种方法--互斥锁,条件变量,信号量,读写锁

    Linux下提供了多种方式来处理线程同步,最常用的是互斥锁.条件变量.信号量和读写锁. 下面是思维导图:  一.互斥锁(mutex)  锁机制是同一时刻只允许一个线程执行一个关键部分的代码. 1 . ...

  7. Linux下线程同步的几种方法

    Linux下提供了多种方式来处理线程同步,最常用的是互斥锁.条件变量和信号量. 一.互斥锁(mutex) 锁机制是同一时刻只允许一个线程执行一个关键部分的代码.  1. 初始化锁 int pthrea ...

  8. 归纳一下:C#线程同步的几种方法

    转自原文 归纳一下:C#线程同步的几种方法 我们在编程的时候,有时会使用多线程来解决问题,比如你的程序需要在后台处理一大堆数据,但还要使用户界面处于可操作状态:或者你的程序需要访问一些外部资源如数据库 ...

  9. IOS 多线程,线程同步的三种方式

    本文主要是讲述 IOS 多线程,线程同步的三种方式,更多IOS技术知识,请登陆疯狂软件教育官网. 一般情况下我们使用线程,在多个线程共同访问同一块资源.为保护线程资源的安全和线程访问的正确性. 在IO ...

随机推荐

  1. 20170411 F110初始界面-建议清单

    功能块代码              F110 开发类                  FIBP  事务说明              自动付款参数 程序                  SAPF ...

  2. 剑指offer 面试16题

    面试16题: 题目:数值的整数次方 题:实现函数double Power(double base, int exponent),求base的exponent次方.不得使用库函数,同时不需要考虑大数问题 ...

  3. Django_随机验证码

    随机验证码 Python生成随机验证码,需要使用PIL模块. 安装: pip3 install pillow 基本使用 1. 创建图片 from PIL import Image img = Imag ...

  4. focus + select

    focus使光标定位到目标节点之后 select选中光标所在位置的全部内容

  5. win32调试——OutputDebugString

    win32下开发console程序可以直接用printf打印到控制台. 开发图形界面程序时,可以调用OutputDebugString将字符串输出到Debug窗口, 注意是要调试运行才能看到Debug ...

  6. Spring session共享(使用redis)

    SpringBoot+Redis实现HttpSession共享 前提:需要使用redis做session存储 一.效果演练(这里使用SpringBoot工程,Spring同理) 1.一个工程使用两个端 ...

  7. ARC 与非ARC 之间的转换,以及如何使一个项目中,ARC与非ARC共存

    1,非ARC 转 ARC的操作 XCode 的 Edit -- Refactor -- Convert to Object-C ARC (注意,一般在一个大项目中,很少直接使用此方法,其正确率有待考虑 ...

  8. [RK3288][Android6.0] TS-ADC驱动流程小结【转】

    本文转载自:https://blog.csdn.net/kris_fei/article/details/55045936 Platform: RK3288OS: Android 6.0Kernel: ...

  9. python中threading多线程

    python中有两个处理多线程的模块thread和threading.其中thread提供了多线程底层支持的模块,以低级原始的发那个是来处理和控制线程,使用起来较为复杂:而threading基于thr ...

  10. Bootstrap3组件--1

     目录 1. Glyphicons字体图标 2.下拉菜单 3.按钮组 4. 输入框组 5.导航 6. 导航条 7. 路径导航 1. Glyphicons字体图标 出于性能的考虑,所有图标都需要一个基类 ...