Linux 线程同步的三种方法(互斥锁、条件变量、信号量)
互斥锁
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
#include <pthread.h>
#include "iostream"
using namespace std;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int tmp;
void* thread(void *arg)
{
cout << "thread id is " << pthread_self() << endl;
pthread_mutex_lock(&mutex);
tmp = ;
cout << "Now a is " << tmp << endl;
pthread_mutex_unlock(&mutex);
return NULL;
}
int main()
{
pthread_t id;
cout << "main thread id is " << pthread_self() << endl;
tmp = ;
cout << "In main func tmp = " << tmp << endl;
if (!pthread_create(&id, NULL, thread, NULL))
{
cout << "Create thread success!" << endl;
}
else
{
cout << "Create thread failed!" << endl;
}
pthread_join(id, NULL);
pthread_mutex_destroy(&mutex);
return ;
}
//编译:g++ -o thread testthread.cpp -lpthread
条件变量
#include <stdio.h>
#include <pthread.h>
#include "stdlib.h"
#include "unistd.h"
pthread_mutex_t mutex;
pthread_cond_t cond;
void hander(void *arg)
{
free(arg);
(void)pthread_mutex_unlock(&mutex);
}
void *thread1(void *arg)
{
pthread_cleanup_push(hander, &mutex);
while()
{
printf("thread1 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread1 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep();
}
pthread_cleanup_pop();
}
void *thread2(void *arg)
{
while()
{
printf("thread2 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread2 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep();
}
}
int main()
{
pthread_t thid1,thid2;
printf("condition variable study!\n");
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond, NULL);
pthread_create(&thid1, NULL, thread1, NULL);
pthread_create(&thid2, NULL, thread2, NULL);
sleep();
do
{
pthread_cond_signal(&cond);
}while();
sleep();
pthread_exit();
return ;
}
#include <pthread.h>
#include <unistd.h>
#include "stdio.h"
#include "stdlib.h"
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
struct node
{
int n_number;
struct node *n_next;
}*head = NULL;
static void cleanup_handler(void *arg)
{
printf("Cleanup handler of second thread./n");
free(arg);
(void)pthread_mutex_unlock(&mtx);
}
static void *thread_func(void *arg)
{
struct node *p = NULL;
pthread_cleanup_push(cleanup_handler, p);
while ()
{
//这个mutex主要是用来保证pthread_cond_wait的并发性
pthread_mutex_lock(&mtx);
while (head == NULL)
{
//这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何
//这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线
//程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。
//这个时候,应该让线程继续进入pthread_cond_wait
// pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,
//然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立
//而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx);,再读取资源
//用这个流程是比较清楚的
pthread_cond_wait(&cond, &mtx);
p = head;
head = head->n_next;
printf("Got %d from front of queue/n", p->n_number);
free(p);
}
pthread_mutex_unlock(&mtx); //临界区数据操作完毕,释放互斥锁
}
pthread_cleanup_pop();
return ;
}
int main(void)
{
pthread_t tid;
int i;
struct node *p;
//子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,而
//不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大
pthread_create(&tid, NULL, thread_func, NULL);
sleep();
for (i = ; i < ; i++)
{
p = (struct node*)malloc(sizeof(struct node));
p->n_number = i;
pthread_mutex_lock(&mtx); //需要操作head这个临界资源,先加锁,
p->n_next = head;
head = p;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mtx); //解锁
sleep();
}
printf("thread 1 wanna end the line.So cancel thread 2./n");
//关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,退出
//线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。
pthread_cancel(tid);
pthread_join(tid, NULL);
printf("All done -- exiting/n");
return ;
}
信号量
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
#include <errno.h>
#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}
typedef struct _PrivInfo
{
sem_t s1;
sem_t s2;
time_t end_time;
}PrivInfo;
static void info_init (PrivInfo* thiz);
static void info_destroy (PrivInfo* thiz);
static void* pthread_func_1 (PrivInfo* thiz);
static void* pthread_func_2 (PrivInfo* thiz);
int main (int argc, char** argv)
{
pthread_t pt_1 = ;
pthread_t pt_2 = ;
int ret = ;
PrivInfo* thiz = NULL;
thiz = (PrivInfo* )malloc (sizeof (PrivInfo));
if (thiz == NULL)
{
printf ("[%s]: Failed to malloc priv./n");
return -;
}
info_init (thiz);
ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);
if (ret != )
{
perror ("pthread_1_create:");
}
ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);
if (ret != )
{
perror ("pthread_2_create:");
}
pthread_join (pt_1, NULL);
pthread_join (pt_2, NULL);
info_destroy (thiz);
return ;
}
static void info_init (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
thiz->end_time = time(NULL) + ;
sem_init (&thiz->s1, , );
sem_init (&thiz->s2, , );
return;
}
static void info_destroy (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
sem_destroy (&thiz->s1);
sem_destroy (&thiz->s2);
free (thiz);
thiz = NULL;
return;
}
static void* pthread_func_1 (PrivInfo* thiz)
{
return_if_fail(thiz != NULL);
while (time(NULL) < thiz->end_time)
{
sem_wait (&thiz->s2);
printf ("pthread1: pthread1 get the lock./n");
sem_post (&thiz->s1);
printf ("pthread1: pthread1 unlock/n");
sleep ();
}
return;
}
static void* pthread_func_2 (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
while (time (NULL) < thiz->end_time)
{
sem_wait (&thiz->s1);
printf ("pthread2: pthread2 get the unlock./n");
sem_post (&thiz->s2);
printf ("pthread2: pthread2 unlock./n");
sleep ();
}
return;
}
总结:
互斥锁是是访问共享变量的,防止多线程同时写出现脏数据。
信号量是用来线程同步的,可两线程双向互相通知,也可单向通知。
条件变量是信号量的一种封装,用于线程单向等待另一个线程的通知,也可先后多个线程等待同一个条件变量的唤醒。
参考资料:https://blog.csdn.net/zsf8701/article/details/7844316
Linux 线程同步的三种方法(互斥锁、条件变量、信号量)的更多相关文章
- 【转】 Linux 线程同步的三种方法
线程的最大特点是资源的共享性,但资源共享中的同步问题是多线程编程的难点.linux下提供了多种方式来处理线程同步,最常用的是互斥锁.条件变量和信号量. 一.互斥锁(mutex) 通过锁机制实现线程间的 ...
- Java中实现线程同步的三种方法
实现同步的三种方法 多线程共享数据时,会发生线程不安全的情况,多线程共享数据必须同步. 实现同步的三种方法: 使用同步代码块 使用同步方法 使用互斥锁ReetrantLock(更灵活的代码控制) 代码 ...
- java多线程二之线程同步的三种方法
java多线程的难点是在:处理多个线程同步与并发运行时线程间的通信问题.java在处理线程同步时,常用方法有: 1.synchronized关键字. 2.Lock显示加锁. 3.信号量Se ...
- JAVA之线程同步的三种方法
最近接触到一个图片加载的项目,其中有声明到的线程池等资源需要在系统中线程共享,所以就去研究了一下线程同步的知识,总结了三种常用的线程同步的方法,特来与大家分享一下.这三种方法分别是:synchroni ...
- C++11 多线程同步 互斥锁 条件变量
在多线程程序中,线程同步(多个线程访问一个资源保证顺序)是一个非常重要的问题,Linux下常见的线程同步的方法有下面几种: 互斥锁 条件变量 信号量 这篇博客只介绍互斥量和条件变量的使用. 互斥锁和条 ...
- linux c 线程间同步(通信)的几种方法--互斥锁,条件变量,信号量,读写锁
Linux下提供了多种方式来处理线程同步,最常用的是互斥锁.条件变量.信号量和读写锁. 下面是思维导图: 一.互斥锁(mutex) 锁机制是同一时刻只允许一个线程执行一个关键部分的代码. 1 . ...
- Linux下线程同步的几种方法
Linux下提供了多种方式来处理线程同步,最常用的是互斥锁.条件变量和信号量. 一.互斥锁(mutex) 锁机制是同一时刻只允许一个线程执行一个关键部分的代码. 1. 初始化锁 int pthrea ...
- 归纳一下:C#线程同步的几种方法
转自原文 归纳一下:C#线程同步的几种方法 我们在编程的时候,有时会使用多线程来解决问题,比如你的程序需要在后台处理一大堆数据,但还要使用户界面处于可操作状态:或者你的程序需要访问一些外部资源如数据库 ...
- IOS 多线程,线程同步的三种方式
本文主要是讲述 IOS 多线程,线程同步的三种方式,更多IOS技术知识,请登陆疯狂软件教育官网. 一般情况下我们使用线程,在多个线程共同访问同一块资源.为保护线程资源的安全和线程访问的正确性. 在IO ...
随机推荐
- 剑指offer 面试3题
面试3题: 题:数组中重复的数字 题目:在一个长度为n的数组里的所有数字都在0到n-1的范围内. 数组中某些数字是重复的,但不知道有几个数字是重复的.也不知道每个数字重复几次.请找出数组中任意一个重复 ...
- C语言定义一个指针变量
10.2.1 定义一个指针变量 对指针变量的定义包括三个内容: (1) 指针类型说明,即定义变量为一个指针变量: (2) 指针变量名: (3) 变量值(指针)所指向的变量的数据类型. 其一般形式为: ...
- 中间件 WSGI
冒泡程序 array = [1, 2, 5, 3, 6, 8, 4] for i in range(len(array) - 1, 0, -1): print i for j in range(0, ...
- Python进阶(2)_进程与线程的概念
1 进程与线程相关概念 1.1 进程 进程定义: 进程就是一个程序在一个数据集上的一次动态执行过程.进程一般由程序.数据集.进程控制块三部分组成,是最小的资源管理单元 程序:用来描述进程要完成哪些功能 ...
- rabbitmq 命令行工具 执行失败.
修改cookie成一样 资料: http://zhiku8.com/rabbitmq-authentication-failed-rejected-by-the-remote- ...
- Loadrunder脚本篇——web_custom_request做接口测试
一.POST + JSON格式参数 例: web_custom_request("create", "URL=http://xxx.xxx.x.xx:1600/ditui ...
- asp.net 下载图片
public class DownLoad : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Res ...
- ssh登陆virtualbox虚拟机
- Hibernate深入浅出(九)持久层操作——数据保存&批量操作
数据保存: 1)session.save session.save方法用于实体对象到数据库的持久化操作.也就是说,session.save方法调用与实体对象所匹配的Insert SQL,将数据插入 ...
- MATLAB画图设置长宽。并高清复制