树状数组
一个被发明以来广为流行的数据结构,基于数组,核心是lowerbit()操作。
他向前lowerbit()操作为前缀,向后lowerbit()操作为上辖,我们运用树状数组都是使一个由O(1)变为O(log),一个由O(n)变为O(log),有两种类型一种是上辖修改前缀查询,典型的为前缀和,前缀最值,一种是前缀修改上辖查询,典型为前缀染色。
其他的操作一般都是建立在他们的基础上或者与之类似。
我们还可以把向前lowerbit()操作为上辖,向后lowerbit()操作为后缀,这样就可以把之前的前缀操作改为后缀操作。
树状数组的多维扩展也是应用广泛,但应用最多为二维,其他维数根据需要有不同的用处。

#include <cstdio>
const int N=;
int t[N],n,st,a,mod,num,temp,step,s;
long long ans;
inline int Q(int pos){
int ret=;
for(;pos>;pos-=pos&(-pos))
ret+=t[pos];
return ret;
}
inline void U(int pos){
for(;pos<=a;pos+=pos&(-pos))++t[pos];
}
int main(){
register int now;
scanf("%d%d%d%d",&n,&st,&a,&mod),now=st,step=;int i;
for(i=;i<=n&&now<mod;++i)now+=a;now%=mod;
for(;i<=n;++i){
temp=(now>st?(now-st)/a+:)+s*(step+)+(num-s)*step-;
if(now<a)++s,U(now+),++num,++temp;
now=(now+a)%mod;
if(now<a)step=-,s=Q(now+);
ans+=i--temp,++step;
}
printf("%lld",ans);
}

【NOIP模拟赛】飞(fly) 数论+树状数组的更多相关文章

  1. 模拟赛 T3 DFS序+树状数组+树链的并+点权/边权技巧

    题意:给定一颗树,有 $m$ 次操作. 操作 0 :向集合 $S$ 中加入一条路径 $(p,q)$,权值为 $v$ 操作 1 :给定一个点集 $T$,求 $T$ 的并集与 $S$ 中路径含交集的权和. ...

  2. [CSP-S模拟测试]:飞(fly)(数状数组+简单几何)

    题目描述 $liu\_runda$决定提高一下知识水平,于是他去请教郭神.郭神随手就给了$liu\_runda$一道神题,$liu\_runda$并不会做,于是把这个题扔到联考里给高二的做.郭神有$n ...

  3. 【BZOJ 2957】楼房重建&&Codechef COT5 Count on a Treap&&【NOIP模拟赛】Weed 线段树的分治维护

    线段树是一种作用于静态区间上的数据结构,可以高效查询连续区间和单点,类似于一种静态的分治.他最迷人的地方在于“lazy标记”,对于lazy标记一般随我们从父区间进入子区间而下传,最终给到叶子节点,但还 ...

  4. 2016北京网络赛 hihocoder 1391 Countries 树状数组

    Countries   描述 There are two antagonistic countries, country A and country B. They are in a war, and ...

  5. 2016 大连网赛---Weak Pair(dfs+树状数组)

    题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=5877 Problem Description You are given a rooted ...

  6. UVA 11610 Reverse Prime (数论+树状数组+二分,难题)

    参考链接http://blog.csdn.net/acm_cxlove/article/details/8264290http://blog.csdn.net/w00w12l/article/deta ...

  7. 第十二届湖南省赛G - Parenthesis (树状数组维护)

    Bobo has a balanced parenthesis sequence P=p 1 p 2…p n of length n and q questions. The i-th questio ...

  8. 2018 CCPC网络赛 1010 hdu 6447 ( 树状数组优化dp)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=6447 思路:很容易推得dp转移公式:dp[i][j] = max(dp[i][j-1],dp[i-1][j ...

  9. HDU 6203 2017沈阳网络赛 LCA,DFS+树状数组

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6203 题意:n+1 个点 n 条边的树(点标号 0 ~ n),有若干个点无法通行,导致 p 组 U V ...

随机推荐

  1. phpstudy配置域名后apache无法启动

    1.设置域名后重启 apache停止了 检查步骤1.php路径不要有中文,phpstudy重新安装在无中文路径 2.检查80端口是否被占用,如果被占用可以停止该程序或者修改apache/nginx 端 ...

  2. 模块的使用与orm简介

    目录 1 django中app的概念: 2 模板路径配置: 3 静态文件配置: 4 完整版登录功能 5 get请求和post请求 6 新手三件套总结 7 pycharm连接mysql 8 orm介绍 ...

  3. re模块(详解正则)

    re模块 imort re 1.\w \W print(re.findall('\w','ab 12\+- _*&')) #\w 匹配字母 数字 及下划线 执行结果:['a', 'b', '1 ...

  4. node 动态页面渲染

    代码: 'use strict' const express = require('express'); const consoldiate = require('consolidate'); con ...

  5. 笔记-twisted-adbapi-scrapy

    笔记-twisted-adbapi-scrapy-mysql 1.      异步插入mysql 在爬虫中需要insert到mysql,但有一个问题是在爬虫环境中commit的及时性与性能冲突. 一般 ...

  6. oracle杀死锁表的进程(转发+合并+自己实践)

    之一: Oracle数据库操作中,我们有时会用到锁表查询以及解锁和kill进程等操作 (1)锁表查询的代码有以下的形式:select count(*) from v$locked_object;sel ...

  7. FPGA的嵌入式乘法器

    1. FPGA主要应用在并行处理资源的应用,视频与图像处理,无线通信的中频调制解调器. 嵌入式乘法器可以配置成一个 18 × 18 乘法器,或者配置成两个 9 × 9 乘法器.对于那些大于18 × 1 ...

  8. Qt C++ 并发,并行,多线程编程系列1 什么是并发

    什么是并发,并发往简单来说就是两个或多个独立的任务同时发生,在我们的生活中也是随处可见.如果把每个人都当作一个独立的任务,那每个人可以相互独立的生活,这就是并发. 在计算机的系统里面,并发一般有两种, ...

  9. Qt 实时读串口数据,并将读到的数据从网口发送出去

    需求: 1. 要试试从串口读取数据 2. 将读到的数据从网口发送出去 3.开机启动 4. 没有界面 第一部分 配置Qt Pro文件  需要Qt += serialport network 第二部分 - ...

  10. LeetCode - 20. Valid Parentheses(0ms)

    Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the inpu ...