1809: Parenthesis

Time Limit: 5 Sec     Memory Limit: 128 Mb     Submitted: 2291     Solved: 622


Description

Bobo has a balanced parenthesis sequence P=p1 p2…pn of length n and q questions.
The i-th question is whether P remains balanced after pai and pbi  swapped. Note that questions are individual so that they have no affect on others.
Parenthesis sequence S is balanced if and only if:
1. S is empty;
2. or there exists balanced parenthesis sequence A,B such that S=AB;
3. or there exists balanced parenthesis sequence S' such that S=(S').

Input

The input contains at most 30 sets. For each set:
The first line contains two integers n,q (2≤n≤105,1≤q≤105).
The second line contains n characters p1 p2…pn.
The i-th of the last q lines contains 2 integers ai,bi (1≤ai,bi≤n,ai≠bi).

Output

For each question, output "Yes" if P remains balanced, or "No" otherwise.

Sample Input

4 2
(())
1 3
2 3
2 1
()
1 2

Sample Output

No
Yes
No

Hint

Source

湖南省第十二届大学生计算机程序设计竞赛

//题意: n 长字符串,m次询问,一开始括号是匹配的,问 a ,b 位置的字符调换后,是否匹配

//题解:网上很多的暴力超时代码没看懂,这题,如果,( 看成 1 ,) 看成 -1 ,其实就是求 a -- (b-1) 中前缀和最小的,在调换后是否能满足要求即可,写了个线段树求区间最小

 # include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <sstream>
# include <set>
# include <cmath>
# include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;
#define LL long long
#define lowbit(x) ((x)&(-x))
#define PI acos(-1.0)
#define INF 0x3f3f3f3f3f3f3f3f
#define eps 1e-8
#define MOD 1000000007 inline int scan() {
int x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
}
inline void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
#define MX 100005
/**************************/
struct Tree
{
int l,r;
int m;
}tree[MX*]; int st[MX];
char str[MX]; void build_tree(int l,int r,int k)
{
tree[k] = (Tree){l,r,};
if (l==r)
{
tree[k].m = st[l];
return;
}
int mid = (l+r)/;
build_tree(l,mid,*k);
build_tree(mid+,r,*k+);
tree[k].m = min(tree[*k].m,tree[*k+].m);
} int inqy(int l,int r,int k)
{
if (l==tree[k].l&&r==tree[k].r)
return tree[k].m; int mid = (tree[k].l+tree[k].r)/;
if (r<=mid) return inqy(l,r,*k);
else if (l>mid) return inqy(l,r,*k+);
return min (inqy(l,mid,*k) , inqy(mid+,r,*k+));
} int main()
{
int n,m;
while (scanf("%d%d",&n,&m)!=EOF)
{
scanf("%s",str+);
st[]=;
for (int i=;i<=n;i++)
st[i] = st[i-] + (str[i]=='('?:- );
build_tree(,n,);
while (m--)
{
int a = scan();
int b = scan();
if (a>b) swap(a,b); int ok=; int sb = inqy(a,b-,);
if (str[a]=='(') sb--;
else sb++;
if (str[b]==')') sb--;
else sb++;
if (sb<) ok=; if (ok)
printf("Yes\n");
else
printf("No\n");
}
}
return ;
}

Parenthesis(前缀和+线段树)的更多相关文章

  1. V-Parenthesis 前缀+ZKW线段树或RMQ

    Bobo has a balanced parenthesis sequence P=p 1 p 2…p n of length n and q questions. The i-th questio ...

  2. BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)

    BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...

  3. kuangbin专题七 HDU1540 Tunnel Warfare (前缀后缀线段树)

    During the War of Resistance Against Japan, tunnel warfare was carried out extensively in the vast a ...

  4. COGS1752 [BOI2007]摩基亚Mokia(CDQ分治 + 二维前缀和 + 线段树)

    题目这么说的: 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如“用户C的位置在哪?”的问题,精确到毫米.但其真正高科技之处在于,它 ...

  5. 816B. Karen and Coffee 前缀和思维 或 线段树

    LINK 题意:给出n个[l,r],q个询问a,b,问被包含于[a,b]且这样的区间数大于k个的方案数有多少 思路:预处理所有的区间,对于一个区间我们标记其(左边界)++,(右边界+1)--这样就能通 ...

  6. CSU 1809 Parenthesis(线段树+前缀和)

    Parenthesis Problem Description: Bobo has a balanced parenthesis sequence P=p1 p2-pn of length n and ...

  7. CSU 1809 - Parenthesis - [前缀和+维护区间最小值][线段树/RMQ]

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1809 Bobo has a balanced parenthesis sequenc ...

  8. 2016年湖南省第十二届大学生计算机程序设计竞赛---Parenthesis(线段树求区间最值)

    原题链接 http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1809 Description Bobo has a balanced parenthes ...

  9. 51nod 1081 子段求和(线段树 | 树状数组 | 前缀和)

    题目链接:子段求和 题意:n个数字序列,m次询问,每次询问从第p个开始L长度序列的子段和为多少. 题解:线段树区间求和 | 树状数组区间求和 线段树: #include <cstdio> ...

随机推荐

  1. hdu1698 Just a Hook (线段树区间更新 懒惰标记)

    Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  2. 配置 mybatis的 log4j.properties

    log4j.rootLogger=debug,stdout,logfile ### 把日志信息输出到控制台 ### log4j.appender.stdout=org.apache.log4j.Con ...

  3. ant-design 实现 添加页面

    1.逻辑代码 /** * 添加用户 */ import React,{PureComponent} from 'react' import {Card,Form,Input,Select,Button ...

  4. JAVA 模块

    commons-lang3 maven repository, 项目主页 fastjson maven repository, 项目主页 fastjson 是阿里巴巴开源的序列化和反序列化 JSON ...

  5. Struts Spring Plugin注意点

    Settings The following settings can be customized. See the developer guide. Setting Description Defa ...

  6. 来自oaim的一些推广信息

    笔者几年工作经历亲身走访过一些玻璃深加工企业,发现很重要的一种工具装载玻璃的铁架.而许多企业由于缺少实际操作的经验,导致部分铁架从被制作出来就让我们的成品存在质量缺陷的隐患,最常见的是装好中空玻璃,当 ...

  7. silverlight RadGridView总结三(转载)

    在RadGridView中进行分组以及导出 分组 主要是在前台进行分组的定义: 前台代码: <telerik:RadGridView x:Name="RadGridView1" ...

  8. sshd服务安装和配置管理

    1.SSHD简介(介绍) SSH协议:安全外壳协议,为Secure Shell的缩写,SSH为建立在应用层和传输层基础上的安全协议. sshd服务使用SSH协议可以用来进行远程控制,或在计算机之间传送 ...

  9. C#实现svn server端的hook

    目标 要做的东东呢,就是在向svn提交文件的时候,可以再server端读到所有提交文件的内容,并根据某些规则验证文件的合法性,如果验证失败,则终止提交,并在svn的客户端上显示错误信息. 准备工作   ...

  10. NIO之Channel聚集(gather)写入与分散(scatter)读取

    Channel聚集(gather)写入 聚集写入( Gathering Writes)是指将多个 Buffer 中的数据“聚集”到 Channel. 特别注意:按照缓冲区的顺序,写入 position ...