题意:有最少用多少条边不重复的路径可以覆盖一个张无向图 ,输出每条路径的边的序号 , 如果是反向就输出-id。

也就是可以多少次一笔画的方式画完这个无向图。

题解:我们已知最优胜的情况是整个图是欧拉图的时候 ,我们只需要一笔就搞定了 , 可是现在这个图并不是一个欧拉图, 所以现在问题是其转化为欧拉图 ,那我们根据欧拉图的性质 , 如果一个无向图是欧拉图的时候当且这个图有奇数的度的点有0个或者是2个 , 而且如果是两个的话那这两个点肯定是起点或者终点  ;  所以现在我们就遍历整个图的奇数点将其连接成为一个欧拉图 , 然后跑一遍求欧拉路径的算法 ,如果遇到的是我们构造出的虚拟边 , 是不是就是意味着这里是一个断点 ,需要我们重新起笔在画;

#include<cstdio>
#include<vector>
#include<algorithm>
#include<cstring>
#include<iostream>
using namespace std;
typedef long long ll ;
const int maxn = 1e5+;
struct Edge
{
int to,id,next;
bool f;
}edges[maxn<<];
int fa=;
int tot , head[maxn] , cnt;
bool vis[maxn];
vector<int> res[maxn];
int deg[maxn];
void init()
{
tot = ;
cnt = ;
memset(deg,,sizeof(deg));
memset(vis,,sizeof(vis));
memset(head,-,sizeof(head));
}
void AddEdge(int u , int v , int id)
{
edges[tot].f=; edges[tot].to = v ; edges[tot].id=id;
edges[tot].next = head[u] ; head[u] = tot++;
} void dfs(int u)
{
vis[u]=true;
for(int i=head[u] ; ~i ; i=edges[i].next)
{
int v=edges[i].to , id =edges[i].id;
if(!edges[i].f)
{
edges[i].f = edges[i^].f=true; //将边和反向边标记
dfs(v);
if(id) res[cnt].push_back(-id); ///退丈记录边id
else cnt++; ///扫到虚边,那么路径加1
}
}
}
void Print()
{
printf("%d\n",cnt);
for(int i= ; i<=cnt ; i++)
{
printf("%d",res[i].size());
for(int j= ; j<res[i].size() ; ++j)
printf(" %d",res[i][j]);
puts("");
res[i].clear();
}
}
int main()
{
int T,N,M,u,v,tmp;
while(~scanf("%d%d",&N,&M))
{
init();
for(int i= ; i<=M ; i++)
{
scanf("%d%d",&u,&v);
deg[u]++ , deg[v]++;
AddEdge(u,v,i);
AddEdge(v,u,-i);
}
///将图的奇数的度连起
u=;
for(int i= ; i<=N ; i++)
{
if(deg[i]&)
{
if(u)
{
AddEdge(u,i,);
AddEdge(i,u,);
u=;
}
else u=i;
}
} for(int i= ; i<=N ; i++)
{
if(!vis[i] && (deg[i]&))
{
cnt++; ///细节处理cnt , 如果出现虚边cnt++ , 下次dfs()还cnt++ , 这是不对的
dfs(i);
cnt--;
}
}
for(int i= ; i<=N ; i++)
{
if(!vis[i] && deg[i])
{
cnt++; ///偶数的点不会出现虚遍
dfs(i); }
}
Print();
}
return ;
}

参考出

HDU6311 Cover (欧拉路径->无向图有最少用多少条边不重复的路径可以覆盖一个张无向图)的更多相关文章

  1. hdu6311 Cover (欧拉路径输出)

    hdu6311Cover 题目传送门 题意:有最少用多少条边不重复的路径可以覆盖一个张无向图. 分析:对于一个连通块(单个点除外),如果奇度数点个数为 k,那么至少需要max{k/2,1}  条路径. ...

  2. HDU - 6311 Cover (欧拉路径)

    题意:有最少用多少条边不重复的路径可以覆盖一个张无向图. 分析:对于一个连通块(单个点除外),如果奇度数点个数为 k,那么至少需要max{k/2,1}  条路径.将奇度数的点两两相连边(虚边),然后先 ...

  3. HDU6311 Cover【欧拉路径 | 回路】

    HDU6311 Cover 题意: 给出\(N\)个点的简单无向图,不一定联通,现在要用最少的路径去覆盖所有边,并且每条边只被覆盖一次,问最少路径覆盖数和各条路径 \(N\le 10^5\) 题解: ...

  4. poj 1236 Network of Schools【强连通求孤立强连通分支个数&&最少加多少条边使其成为强连通图】

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13800   Accepted: 55 ...

  5. poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】

    Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10141   Accepted: 503 ...

  6. poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11047   Accepted: 4725 ...

  7. Java 第十一届 蓝桥杯 省模拟赛 无向连通图最少包含多少条边

    无向连通图最少包含多少条边 题目 问题描述 一个包含有2019个结点的无向连通图,最少包含多少条边? 答案提交 这是一道结果填空的题,你只需要算出结果后提交即可.本题的结果为一个整数,在提交答案时只填 ...

  8. HDU - 6311 Cover(无向图的最少路径边覆盖 欧拉路径)

    题意 给个无向图,无重边和自环,问最少需要多少路径把边覆盖了.并输出相应路径 分析 首先联通块之间是独立的,对于一个联通块内,最少路径覆盖就是  max(1,度数为奇数点的个数/2).然后就是求欧拉路 ...

  9. HDU - 6311:Cover(欧拉回路,最少的一笔画覆盖无向图)

    The Wall has down and the King in the north has to send his soldiers to sentinel. The North can be r ...

随机推荐

  1. c语言实践 创建两个包含8个元素的double类型数组,第二个元素的每个元素的值都是对应前一个元素的前n个元素的和

    意思就是第二个元素的num[2]等于第一个元素的num[0]+num[1]+num[2] #define COUNT 8 int main(void) { double num1[COUNT]; do ...

  2. 使用 tpl 标签和 for 读取对象属性值中的数组

    来源于<sencha touch 权威指南> ----------------------------- 只摘抄app.js代码: Ext.require(['Ext.form.Panel ...

  3. Python3 BeautifulSoup和Pyquery解析库随笔

    BeautifuSoup和Pyquery解析库方法比较 1.对象初始化: BeautifySoup库: from bs4 import BeautifulSoup html = 'html strin ...

  4. Mybatis XML 配置文件

    <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE configuration PUBLIC ...

  5. java IO Nio 文件拷贝工具类Files

    public static void main(String[] args) throws Exception { Files.copy(Paths.get("file/text.txt&q ...

  6. Kernel的意义

    在第7章最后一段讲到Kernel,Kernel就是用向量表示元素的和的乘积. Back in our discussion of linear regression, we had a problem ...

  7. 编写高质量代码改善C#程序的157个建议——建议14: 正确实现浅拷贝和深拷贝

    建议14: 正确实现浅拷贝和深拷贝 为对象创建副本的技术称为拷贝(也叫克隆).我们将拷贝分为浅拷贝和深拷贝. 浅拷贝 将对象中的所有字段复制到新的对象(副本)中.其中,值类型字段的值被复制到副本中后, ...

  8. C语言编程学习:链表的来源分析

    C语言是面向过程的,而C++是面向对象的 C和C++的区别: C是一个结构化语言,它的重点在于算法和数据结构.C程序的设计首要考虑的是如何通过一个过程,对输入(或环境条件)进行运算处理得到输出(或实现 ...

  9. Vue 兄弟组件通过事件广播传递数据

    非父子组件传值 通过事件广播实现非父子组件传值1.新建js,引入并实例化Vue import Vue from 'vue' var VueEvent = new Vue(); export defau ...

  10. kubernetes dashboard 安装

    环境:CentOS Linux release 7.3.1611 (Core)IP:192.168.0.103 [1]组件安装yum install device-mapperyum install ...