BZOJ 4408 FJOI2016 神秘数 可持久化线段树
Description
一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},
1 = 1
2 = 1+1
3 = 1+1+1
4 = 4
5 = 4+1
6 = 4+1+1
7 = 4+1+1+1
8无法表示为集合S的子集的和,故集合S的神秘数为8。
现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。
Input
第一行一个整数n,表示数字个数。
第二行n个整数,从1编号。
第三行一个整数m,表示询问个数。
以下m行,每行一对整数l,r,表示一个询问。
Output
对于每个询问,输出一行对应的答案。
Sample Input
1 2 4 9 10
5
1 1
1 2
1 3
1 4
1 5
Sample Output
4
8
8
8
HINT
对于100%的数据点,n,m <= 100000,∑a[i] <= 10^9
题意极为简洁。。。。
可以发现这个题需要分析一些性质来判断一个数是否可以被凑出来。一个数被凑出来的时候一定不会用到大于它的数字,只可能会用到小于它的数字。
问题看起来很无序,那么找到一个考虑的顺序,把询问区间内所有的数字从小到大开始考虑。首先看有没有1,如果有,那么1就可以凑出来,同时可以发现如果有x个1,那么1~x都可以凑出来。那么考虑1~x范围内的所有数字,你可发现任何一个非1的数字都可以使我们可以连续表达的数字区间增大了(脑补一个移动的窗口),1~x区间内能表示出的最大数字就是 x+(区间内小于等于x的最大值)。仔细一想这正是一个同构子问题!
每一次都这样做,我们最多会扩大几次考虑范围呢?不难发现只要还有答案成立,这一次扩大之后的考虑范围至少是上一次的两倍,所以最多也就log级别。
于是我们只需要维护区间内小于等于某个数字的和就可以了,开心上一发主席树板子。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<cctype>
using namespace std;
const int MAXN=; int N,M,AA[MAXN],rank[MAXN],tot;
struct persistable_segment_tree{
static const int maxn=;
static const int maxm=;
int root[maxm],np,lc[maxn],rc[maxn],sum[maxn];
persistable_segment_tree(){ np=; }
void pushup(int now){ sum[now]=sum[lc[now]]+sum[rc[now]]; }
void build(int &now,int L,int R){
now=++np,lc[now]=rc[now]=sum[now]=;
if(L==R) return;
int m=L+R>>;
build(lc[now],L,m); build(rc[now],m+,R);
}
int copynode(int now){
np++,lc[np]=lc[now],rc[np]=rc[now],sum[np]=sum[now];
return np;
}
void update(int &now,int L,int R,int pos,int v){
now=copynode(now);
if(L==R){ sum[now]+=v; return; }
int m=L+R>>;
if(pos<=m) update(lc[now],L,m,pos,v);
else update(rc[now],m+,R,pos,v);
pushup(now);
}
int query(int xx,int yy,int L,int R,int A,int B){
if(A<=L&&R<=B) return sum[yy]-sum[xx];
int m=L+R>>;
if(B<=m) return query(lc[xx],lc[yy],L,m,A,B);
if(A>m) return query(rc[xx],rc[yy],m+,R,A,B);
return query(lc[xx],lc[yy],L,m,A,B)+query(rc[xx],rc[yy],m+,R,A,B);
}
}st; void data_in()
{
scanf("%d",&N);
for(int i=;i<=N;i++) scanf("%d",&AA[i]);
scanf("%d",&M);
}
void work()
{
memcpy(rank,AA,sizeof(AA));
sort(rank+,rank+N+);
tot=unique(rank+,rank+N+)-rank;
st.build(st.root[],,tot-);
for(int i=;i<=N;i++){
st.root[i]=st.root[i-];
st.update(st.root[i],,tot-,lower_bound(rank+,rank+tot,AA[i])-rank,AA[i]);
}
int l,r,pos,ans,tmp;
for(int i=;i<=M;i++){
scanf("%d%d",&l,&r);
pos=upper_bound(rank+,rank+tot,)-rank-,ans=;
while(pos){
tmp=st.query(st.root[l-],st.root[r],,tot-,,pos);
if(tmp<ans) break;
ans=tmp+;
if(pos==tot-) break;
pos=upper_bound(rank+,rank+tot,ans)-rank-;
}
printf("%d\n",ans);
}
}
int main()
{
data_in();
work();
return ;
}
BZOJ 4408 FJOI2016 神秘数 可持久化线段树的更多相关文章
- (bzoj4408)[FJOI2016]神秘数(可持久化线段树)
(bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...
- Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 128[Submit][Status ...
- BZOJ 4408: [Fjoi 2016]神秘数 可持久化线段树
4408: [Fjoi 2016]神秘数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 Description 一个可重复数字集 ...
- 【BZOJ-4408】神秘数 可持久化线段树
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 475 Solved: 287[Submit][Status ...
- [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+并查集+启发式合并)
[BZOJ 3123] [SDOI 2013]森林(可持久化线段树+启发式合并) 题面 给出一个n个节点m条边的森林,每个节点都有一个权值.有两种操作: Q x y k查询点x到点y路径上所有的权值中 ...
- BZOJ.2653.[国家集训队]middle(可持久化线段树 二分)
BZOJ 洛谷 求中位数除了\(sort\)还有什么方法?二分一个数\(x\),把\(<x\)的数全设成\(-1\),\(\geq x\)的数设成\(1\),判断序列和是否非负. 对于询问\(( ...
- 51Nod 1175 区间中第K大的数 (可持久化线段树+离散)
1175 区间中第K大的数 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 一个长度为N的整数序列,编号0 - N - 1.进行Q次查询,查询编号i至j的所有 ...
- BZOJ 3653: 谈笑风生(DFS序+可持久化线段树)
首先嘛,还是太弱了,想了好久QAQ 然后,这道题么,明显就是求sigma(size[x]) (x是y的儿子且层树小于k) 然后就可以发现:把前n个节点按深度建可持久化线段树,就能用前缀和维护了 其实不 ...
- bzoj 4504: K个串 可持久化线段树+堆
题目: Description 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一 个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计一次). 兔子们想 ...
随机推荐
- 轻量ORM-SqlRepoEx (四)INSERT、UPDATE、DELETE 语句
*本文中所用类声明见上一篇博文<轻量ORM-SqlRepoEx (三)Select语句>中Customers类 一.增加记录 1.工厂一个实例仓储 var repository = Rep ...
- django-多表操作2
#######多表操作二######## 昨天写了基于双下划线查找,都是两个表之间查找,那再多跨几个表呢?还是一样,一步一步分析 # 跨多表查询: 查询红楼梦这本书的作者的电话: (Author,Bo ...
- [洛谷P1390]公约数的和·莫比乌斯反演
公约数的和 传送门 分析 这道题很显然答案为 \[Ans=\sum_{i=1}^n\sum_{j=i+1}^n (i,j)\] //其中\((i,j)\)意味\(gcd(i,j)\) 这样做起来很烦, ...
- SAP常见问题与解决办法(转)
1.A:在公司代码分配折旧表时报错? 在公司代码分配折旧表时报错,提示是“3000 的公司代码分录不完全-参见长文本” 希望各位大侠帮我看看.3000 的公司代码分录不完全-参见长文本 R: a.你把 ...
- mysql like 变量
Mysql: select * from 表名 where 字段 like concat('%',变量,'%');
- 单机安装hadoop+hive+presto
系统环境 在个人笔记本上使用virtualbox虚拟机 os:centos -7.x86-64.everything.1611 ,内核 3.10.0-514.el7.x86_64 注:同样可以使用r ...
- Java语言利用Collections.sort对Map,List排序
1.main方法包含TreeMap排序1,TreeMap排序2,HashMap排序,List<Integer>排序,List<Bean>排序,List<Map>排序 ...
- 路由器基础配置之广播多路访问链路上的ospf
我们将以上面的拓扑图进行实验,因为是要以不断广播的形式进行ospf,所有中间加了一个集线器,这种ospf和前一种不同,路由器之间会在配置好ospf之后选举出一个老大,DR,一个备份,BDR,而其他路由 ...
- Linux分享笔记:系统状态检测命令小结
作为一名合格的运维人员,要能很好地了解Linux服务器,要能熟练查看Linux系统的运行状态.以下是常用到的Linux系统状态检测命令. 1. ifconfig:用于获取网卡配置与网络状态等信息.通常 ...
- springmvc重定向请求。
SpringMVC重定向传参数的实现(来自网友) 验证了我说的,从model层中拿来的数据,不管什么类型,都是通过隐含模型,中转,放入request中的.除非你特意把这些数据放到session域中. ...