Regularization method(正则化方法)

Outline

Overview of Regularization

L0 regularization

L1 regularization

L2 regularization

Elastic Net regularization

L2,1 regularization

Model example

Reference

Overview of Regularization

Main goal:

1. Prevent over-fitting

2. Reduce prediction error

3. Improve generalization performance

Essence:

1. Constraints the parameters to be optimized

2. Minimize your error while regularizing your  parameters

L0 regularization

L1 regularization

L2 regularization

L1 vs. L2

Elastic Net regularization

L2,1 regularization

Reference

1. Sparsity and Some Basics of L1 Regularization

2. A note on the group lasso and a sparse group lasso

3. Hierarchical Structured Sparse Representation

4. 正态分布的前世今生

5. https://www.zhihu.com/question/20924039

6. Sparse methods for machine learning

Regularization method for machine learning的更多相关文章

  1. Classical method of machine learning

    PCA principal components analysis kmeans bayes spectral clustering svm EM hidden Markov models deep ...

  2. Machine Learning and Data Mining(机器学习与数据挖掘)

    Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...

  3. Machine Learning - 第3周(Logistic Regression、Regularization)

    Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...

  4. (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization

    coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...

  5. Andrew Ng Machine Learning 专题【Logistic Regression & Regularization】

    此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探 ...

  6. machine learning(14) --Regularization:Regularized linear regression

    machine learning(13) --Regularization:Regularized linear regression Gradient descent without regular ...

  7. Machine Learning Algorithms Study Notes(2)--Supervised Learning

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...

  8. Machine Learning Algorithms Study Notes(1)--Introduction

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 目 录 1    Introduction    1 1.1    ...

  9. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

随机推荐

  1. Storm 出现 no jzmq in java.library.path

    在真实环境中运行时,在log日志下,查看workpid日志发现出现该错误. 解决办法: 在conf/storm.yaml添加jzmq安装的路径, 我使用的默认安装在/usr/local/lib下 ja ...

  2. Hive中使用LZO

    hive 中使用lzo 1 启动hive 错误Exception in thread "main" java.lang.NoClassDefFoundError: org/apac ...

  3. Oracle树形结构数据---常见处理情景

    Oracle树形结构数据---常见处理情景 1.查看表数据结构 SELECT *      FROM QIANCODE.TREE_HIS_TABLE T  ORDER BY T.NODE_LEVEL; ...

  4. js如何判断数据类型

    1.最常见的判断方法:typeof console.log(typeof a) ------------> string console.log(typeof b) ------------&g ...

  5. duilib属性列表

    <?xml version="1.0" encoding="UTF-8"?> <!-- 可能有错漏,欢迎补充.wangchyz(wangchy ...

  6. Java常用的正则校验

    1.非负整数: (^[1-9]+[0-9]*$)|(^[0]{1}$) 或 (^[1-9]+[0-9]*$)|0 2.非正整数: (^-[1-9]+[0-9]*$)|(^[0]{1}$) 或 (^-[ ...

  7. 【操作系统作业—lab1】linux shell脚本 遍历目标文件夹和所有文件 | 包括特殊字符文件名的处理

    要求:写一个linux bash脚本来查看目标文件夹下所有的file和directory,并且打印出他们的绝对路径. 运行command:./myDir.sh  input_path  output_ ...

  8. javascript--事件对象e的来源、意义、应用及其属性的用法 function(e){}

    在类似于arcgis api for javascript中,经常会遇到function(e),以前一直不懂e是个什么玩意,这种写法啥意思,经过最近一段时间学习,对e有了很深了解,本文通过各种示例,由 ...

  9. Python基于jieba的中文词云

    今日学习了python的词云技术 from os import path from wordcloud import WordCloud import matplotlib.pyplot as plt ...

  10. hdu 1394 Minimum Inversion Number(线段树)

    参考:http://blog.sina.com.cn/s/blog_691ce2b70101ldmm.html https://blog.csdn.net/wiking__acm/article/de ...