Regularization method for machine learning
Regularization method(正则化方法)
Outline
Overview of Regularization
L0 regularization
L1 regularization
L2 regularization
Elastic Net regularization
L2,1 regularization
Model example
Reference
Overview of Regularization
Main goal:
1. Prevent over-fitting
2. Reduce prediction error
3. Improve generalization performance
Essence:
1. Constraints the parameters to be optimized
2. Minimize your error while regularizing your parameters
L0 regularization
L1 regularization
L2 regularization
L1 vs. L2
Elastic Net regularization
L2,1 regularization
Reference
1. Sparsity and Some Basics of L1 Regularization
2. A note on the group lasso and a sparse group lasso
3. Hierarchical Structured Sparse Representation
4. 正态分布的前世今生
5. https://www.zhihu.com/question/20924039
6. Sparse methods for machine learning
Regularization method for machine learning的更多相关文章
- Classical method of machine learning
PCA principal components analysis kmeans bayes spectral clustering svm EM hidden Markov models deep ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- Machine Learning - 第3周(Logistic Regression、Regularization)
Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...
- Andrew Ng Machine Learning 专题【Logistic Regression & Regularization】
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探 ...
- machine learning(14) --Regularization:Regularized linear regression
machine learning(13) --Regularization:Regularized linear regression Gradient descent without regular ...
- Machine Learning Algorithms Study Notes(2)--Supervised Learning
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
- Machine Learning Algorithms Study Notes(1)--Introduction
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 目 录 1 Introduction 1 1.1 ...
- FAQ: Machine Learning: What and How
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...
随机推荐
- 123. Best Time to Buy and Sell Stock III ——LeetCode
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- Could..... not preload global game manager
发布PC版后出现这个错误,是没有破解成功,卸载后重新安装破解就可以了 http://www.cocoachina.com/bbs/read.php?tid=84587
- ECMAScript6
ECMAScript6介绍 # ECMAScript 和 JavaScript 的关系是,前者是后者的规格,后者是前者的一种实现 # 有利于保证这门语言的开放性和中立性. # 标准在每年的 6 月份正 ...
- SpringBoot非官方教程 | 第二十篇: 处理表单提交
转载请标明出处: 原文首发于:https://www.fangzhipeng.com/springboot/2017/07/11/springboot-form/ 本文出自方志朋的博客 这篇文件主要介 ...
- spring入门(六) spring mvc+mybatis
1.引入依赖 <!-- https://mvnrepository.com/artifact/org.mybatis/mybatis --> <dependency> < ...
- shiro框架 4种授权方式 说明
1. shiro的配置文件(applicationContext-shiro.xml)中使用filterChain过滤url的方式 详细配置看注释 <?xml version="1.0 ...
- [tree]合并果子(哈夫曼树+优先队列)
现在有n堆果子,第i堆有ai个果子.现在要把这些果子合并成一堆,每次合并的代价是两堆果子的总果子数.求合并所有果子的最小代价. Input 第一行包含一个整数T(T<=50),表示数据组数. 每 ...
- chromium之non_thread_safe
先看看介绍 // A helper class used to help verify that methods of a class are // called from the same thre ...
- 使用php+gmail 发送邮件
<?php namespace app\index\controller; use think\Controller; use PHPMailer\PHPMailer; class Test e ...
- shell 输出带颜色字体
输出特效格式控制:\033[0m 关闭所有属性 \033[1m 设置高亮度 \03[4m 下划线 \033[5m 闪烁 \033[7m 反显 \033[8m 消隐 \ ...