P1689 方程求解

题目描述

给一个方程,形如X+Y=Z或X-Y=Z。给出了其中两个未知数,请求出第三个数。未知数用‘?’表示,等式中也许会出现一些多余的空格。

输入输出格式

输入格式:

一行,方程。

输出格式:

‘?’代表的值

输入输出样例

输入样例#1: 复制

样例输入1
1+2=?

样例输入2
3 +? =  2
输出样例#1: 复制

样例输出1
3

样例输出1
-1

说明

0<=X,Y,Z<1,000,000,000

模拟

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 110
using namespace std;
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
char ch[N];
],f;
int main()
{
    gets(ch);s=;
    l=strlen(ch);
    ;i<l;i++)
    {
        ')
          w[s]=w[s]*+ch[i]-';
        else
        {
            if(ch[i]!=' '&&ch[i]!='?') ++s;
            ;
            ;
        }
    }
    ]==) w[]=w[]+w[]*(-*f),printf(]);
    else
     ]==) w[]=w[]-w[],printf(]);
     ]=w[]+f*w[],printf(]);
    ;
}

洛谷——P1689 方程求解的更多相关文章

  1. 洛谷 P1689 方程求解

    P1689 方程求解 题目描述 给一个方程,形如X+Y=Z或X-Y=Z.给出了其中两个未知数,请求出第三个数.未知数用‘?’表示,等式中也许会出现一些多余的空格. 输入输出格式 输入格式: 一行,方程 ...

  2. codevs3732==洛谷 解方程P2312 解方程

    P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 已知多项式方程: a ...

  3. 洛谷P1771 方程的解_NOI导刊2010提高(01)

    题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...

  4. BZOJ3129/洛谷P3301方程(SDOI2013)容斥原理+扩展Lucas定理

    题意:给定方程x1+x2+....xn=m,每个x是正整数.但是对前n1个数做了限制x1<=a1,x2<=a2...xn1<=an1,同时对第n1+1到n1+n2个数也做了限制xn1 ...

  5. 洛谷P1771 方程的解

    P1771 方程的解 都知道这个题可以用隔板法做 把这个\(g(x)\)想象为.....\(g(x)\)个苹果? 因为解是正整数,所以给这些"苹果"分组的时候每组最少有一个 然后我 ...

  6. 洛谷P4894 GodFly求解法向量

    如果没有学过向量相关知识请出门右转高中数学必修四~~~ 当然如果你和我一样也是小学生我也不反对 首先说结论:\(\vec{z}=(y1z2-y2z1,z1x2-z2x1,x1y2-x2y1)\) 其实 ...

  7. [NOIP提高&洛谷P1024]一元三次方程求解 题解(二分答案)

    [NOIP提高&洛谷P1024]一元三次方程求解 Description 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约 ...

  8. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  9. 【洛谷p2312】解方程

    (清明培训qwq,明天就要回学校了qwq拒绝) 行吧我洛谷都四天没碰了 解方程[传送门] 算法标签: (作为一个提高+省选-的题) 丁大佬真的很有幽默感emmm: #include <cstdi ...

随机推荐

  1. [USACO07DEC]美食的食草动物Gourmet Grazers

    ---题面--- 题解: 首先观察题面,直觉上对于一头奶牛,肯定要给它配pi和qi符合条件的草中两者尽量低的草,以节省下好草给高要求的牛. 实际上这是对的,但观察到两者尽量低这个条件并不明确,无法用于 ...

  2. Python之利用reduce函数求序列的最值及排序

    在一般将Python的reduce函数的例子中,通常都是拿列表求和来作为例子.那么,是否还有其他例子呢?   本次分享将讲述如何利用Python中的reduce函数对序列求最值以及排序.   我们用r ...

  3. Visual Studio调试之断点技巧篇补遗

    原文链接地址:http://blog.csdn.net/Donjuan/article/details/4649372 讲完Visual Studio调试之断点技巧篇以后,翻翻以前看得一些资料和自己写 ...

  4. “CNKI 中国知网 PDF 全文下载”油猴脚本在线安装地址

    https://greasyfork.org/zh-CN/scripts/18841-cnki-%E4%B8%AD%E5%9B%BD%E7%9F%A5%E7%BD%91-pdf-%E5%85%A8%E ...

  5. Elasticsearch 5.2.1Cluster 搭建

    1.安装java cd ~ wget --no-cookies --no-check-certificate --header "Cookie: gpw_e24=http%3A%2F%2Fw ...

  6. 问题总结——window平台下grunt\bower安装后无法运行的问题

    一.问题: 安装grunt或者bower后,在cmd控制台运行grunt -version 或者 bower -v会出现:“xxx不是内部或外部命令,也不是可运行的程序或批处理文件”,

  7. JS模块化工具requirejs教程01

    转自:http://www.runoob.com/w3cnote/requirejs-tutorial-1.html 随着网站功能逐渐丰富,网页中的js也变得越来越复杂和臃肿,原有通过script标签 ...

  8. 设计模式功能概述(Design Patterns)

    1.Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类. 2.Adapter:将一个类的接口转换成客户希望的另一个接口.Adapter模式使得原本由于 ...

  9. 【HDU5772】String Problem [网络流]

    String Problem Time Limit: 10 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description Input Ou ...

  10. [POJ1423]Stirling公式的应用

    Stirling公式: n!约等于sqrt(2*pi*n)*(n/e)^n 另外,e约等于2.71828182845409523... 试了一下发现math库里面并不能像pi一样直接调e但是发现挺好记 ...