Python数据聚合和分组运算(1)-GroupBy Mechanics
前言
Python的pandas包提供的数据聚合与分组运算功能很强大,也很灵活。《Python for Data Analysis》这本书第9章详细的介绍了这方面的用法,但是有些细节不常用就容易忘记,遂打算把书中这部分内容总结在博客里,以便复习查看。根据书中的章节,这部分知识包括以下四部分:
1.GroupBy Mechanics(groupby技术)
2.Data Aggregation(数据聚合)
3.Group-wise Operation and Transformation(分组级运算和转换)
4.Pivot Tables and Cross-Tabulation(透视表和交叉表)
本文是第一部分,介绍groupby技术。
一、分组原理
核心:
1.不论分组键是数组、列表、字典、Series、函数,只要其与待分组变量的轴长度一致都可以传入groupby进行分组。
2.默认axis=0按行分组,可指定axis=1对列分组。
对数据进行分组操作的过程可以概括为:split-apply-combine三步:
1.按照键值(key)或者分组变量将数据分组。
2.对于每组应用我们的函数,这一步非常灵活,可以是python自带函数,可以是我们自己编写的函数。
3.将函数计算后的结果聚合。

图1:分组聚合原理(图片来自《Python for Data Analysis》page 252)
import pandas as pd
import numpy as np df = pd.DataFrame({'key1' : ['a', 'a', 'b', 'b', 'a'],
'key2' : ['one', 'two', 'one', 'two', 'one'],
'data1' : np.random.randn(5),
'data2' : np.random.randn(5)})

我们将key1当做我们的分组键值,对data1进行分组,再求每组的均值:
grouped = df['data1'].groupby(df['key1'])
语法很简单,但是这里需要注意grouped的数据类型,它不在是一个数据框,而是一个GroupBy对象。
grouped

实际上,在这一步,我们并没有进行任何计算仅仅是创建用key1分组后创建了一个GroupBy对象,我们后面函数的任何操作都是基于这个对象的。
求均值:
grouped.mean()

刚刚我们只是用了key1进行了分组,我们也可以使用两个分组变量,并且通过unstack方法进行结果重塑:
means = df['data1'].groupby([df['key1'], df['key2']]).mean()
means

means.unstack

以上我们的分组变量都是df内部的Series,实际上只要是和key1等长的数组也可以:
states = np.array(['Ohio', 'California', 'California', 'Ohio', 'Ohio'])
years = np.array([2005, 2005, 2006, 2005, 2006])
df['data1'].groupby([states, years]).mean()

二、对分组进行迭代
GroupBy对象支持迭代操作,会产生一个由分组变量名和数据块组成的二元元组:
for name, group in df.groupby('key1'):
print name
print group

如果分组变量有两个:
for (k1,k2), group in df.groupby(['key1','key2']):
print k1,k2
print group

我们可以将上面的结果转化为list或者dict,来看看结果是什么样的:
list(df.groupby(['key1','key2']))

看不太清楚,我们来看看这个列表的第一个元素:
list(df.groupby(['key1','key2']))[0]

同样,我们也可以将结果转化为dict(字典):
dict(list(df.groupby(['key1','key2'])))

dict(list(df.groupby(['key1','key2'])))[('a','one')]

以上都是基于行进行分组,因为默认情况下groupby是在axis=0方向(行方向)进行分组,我们可以指定axis=1方向(列方向)进行分组:
grouped=df.groupby(df.dtypes,axis=1)
list(grouped)[0]

dict(list(grouped))

注意,
'''下面两段语句功能一样'''
df.groupby('key1')['data1']
df.data1.groupby(df.key1)
三、通过字典进行分组
people = pd.DataFrame(np.random.randn(5, 5),
columns=['a', 'b', 'c', 'd', 'e'],
index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis'])
people.ix[2:3, ['b', 'c']] = np.nan # 添加缺失值
people

假如,我们想按列进行聚合,该怎么操作呢?
我们根据实际情况,对列名建立字典,然后将此字典传入groupby,切记指定axis=1,因为我们是对列进行分组聚合:
mapping = {'a': 'red', 'b': 'red', 'c': 'blue',
'd': 'blue', 'e': 'red', 'f' : 'orange'}
by_columns=people.groupby(mapping,axis=1)
by_columns.mean()

既然我们可以通过传入字典来对列进行分组,那么肯定也可以通过传入Series来对列进行分组了(Series中的index就相当字典中的key嘛):
map_series = pd.Series(mapping)
people.groupby(map_series,axis=1).count()

四、通过函数进行分组
刚刚我们分组时利用了dict和series建立映射,对于一些复杂的需求,我们可以直接对groupby函数传递函数名来进行分组,以刚才的people数据为例,如果我们想按行分组,分组的key是每个人名的字母长度,该怎么做呢?比较直接的想法是相对每个名字求长度,建立一个数组,然后将这个数组传入groupby,我们来试验一下:
l=[len(x) for x in people.index]
people.groupby(l).count()

方案可行,那么有没有更快捷更优美的方法呢?当然有啦,我们只需将len这个函数名传给groupby即可:
people.groupby(len).count()

除了传递函数,我们也可以将函数和dict,series,array一起使用,毕竟最后都会统统转化为数组:
key_list = ['one', 'one', 'one', 'two', 'two']
people.groupby([len, key_list]).min()

五、根据索引级别分组
刚刚我们的数据索引只有一级,当数据有多级索引时,可以通过level指定我们想要分组的索引,注意要使用axis=1表示按列:
columns = pd.MultiIndex.from_arrays([['Asian', 'Asian', 'Asian', 'America', 'America'],
['China','Japan','Singapore','United States','Canada']], names=['continent', 'country'])
hier_df = pd.DataFrame(np.random.randn(4, 5), columns=columns)
hier_df

我们按洲进行分组求和:

Python数据聚合和分组运算(1)-GroupBy Mechanics的更多相关文章
- Python 数据分析(二 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识
Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4 ...
- 【学习】数据聚合和分组运算【groupby】
分组键可以有多种方式,且类型不必相同 列表或数组, 某长度与待分组的轴一样 表示DataFrame某个列名的值 字典或Series,给出待分组轴上的值与分组名之间的对应关系 函数用于处理轴索引或索引中 ...
- Python数据聚合和分组运算(2)-Data Aggregation
在上一篇博客里我们讲解了在python里运用pandas对数据进行分组,这篇博客将接着讲解对分组后的数据进行聚合. 1.python 中经过优化的groupy方法 先读入本文要使用的数据集tips. ...
- 《python for data analysis》第九章,数据聚合与分组运算
# -*- coding:utf-8 -*-# <python for data analysis>第九章# 数据聚合与分组运算import pandas as pdimport nump ...
- Python之数据聚合与分组运算
Python之数据聚合与分组运算 1. 关系型数据库方便对数据进行连接.过滤.转换和聚合. 2. Hadley Wickham创建了用于表示分组运算术语"split-apply-combin ...
- Python 数据分析—第九章 数据聚合与分组运算
打算从后往前来做笔记 第九章 数据聚合与分组运算 分组 #生成数据,五行四列 df = pd.DataFrame({'key1':['a','a','b','b','a'], 'key2':['one ...
- 《利用python进行数据分析》读书笔记--第九章 数据聚合与分组运算(一)
http://www.cnblogs.com/batteryhp/p/5046450.html 对数据进行分组并对各组应用一个函数,是数据分析的重要环节.数据准备好之后,通常的任务就是计算分组统计或生 ...
- 利用python进行数据分析之数据聚合和分组运算
对数据集进行分组并对各分组应用函数是数据分析中的重要环节. group by技术 pandas对象中的数据会根据你所提供的一个或多个键被拆分为多组,拆分操作是在对象的特定轴上执行的,然后将一个函数应用 ...
- 利用Python进行数据分析-Pandas(第六部分-数据聚合与分组运算)
对数据集进行分组并对各组应用一个函数(无论是聚合还是转换),通常是数据分析工作中的重要环节.在将数据集加载.融合.准备好之后,通常是计算分组统计或生成透视表.pandas提供了一个灵活高效的group ...
随机推荐
- 使用Docker模拟ansible集群环境
/etc/ansible/hosts 192.168.99.100 ansible_ssh_port=8081 ansible_ssh_user=root 配置容器免密码SSH登录
- in not in 和 null , in 判断范围中可以包含null,而not in判断不能包括null
oracle中,任何字符串与null比较得到的结果都是null,而 oracle的判断条件为null时就退出判断(?) 因此判断某个字符串是否在一个集合中时,not in 和 in的结果完全不一样,如 ...
- C#中用SerialPort类中的Write()方法发送十六进制数
在C#中用SerialPort类中的Write()方法向串口发送十六进制数的方法: MSDN对SerialPort::Write()是这样解释的: 将数据写入串行端口输出缓冲区. 重载列表 名称 ...
- The 1st day of learning Python
This is the first day of studying Python. From 3PM to now, It has taken me nearly 5 hours to 初步了解 py ...
- 201671010127 2016-2017-8 回谈static修饰符
上周学了泛型程序程序设计技术,再一次接触到了静态方法,那么今天就来谈一下static修饰符. static表示“全局”或者“静态”的意思,用来修饰成员变量和成员方法,也可以形成静态static代码块, ...
- ubuntu16配置mysql5.7主从同步
测试环境如下: master: 10.0.0.26 slave01: 10.0.0.27 slave02: 10.0.0.28 一.三台机均安装mysql-server5.7 $ sudo apt-g ...
- 【原创】8. MYSQL++中的Row类型
一.mysqlpp::Row类型 在之前的介绍中我们看到了如何通过mysqlpp::Query找到各种Result类型,然后又仔细分析了各种Result类型又是如何生成对应的Row类型(如下所示). ...
- 无锁的同步策略——CAS操作详解
目录 1. 从乐观锁和悲观锁谈起 2. CAS详解 2.1 CAS指令 2.3 Java中的CAS指令 2.4 CAS结合失败重试机制进行并发控制 3. CAS操作的优势和劣势 3.1 CAS相比独占 ...
- FZU2282 Wand
题意 n个数字,要求至少k个数字位置不变,其余进行错排的方案数 分析 错排公式: D(n)=(n-1)[D(n-2)+D(n-1)] 如果n个数字,i个数字位置不变,其余进行错排的的方案数是C(n, ...
- mysql数据库中插入表情4个字节的
这个问题,原因是UTF-8编码有可能是两个.三个.四个字节.Emoji表情或者某些特殊字符是4个字节,而Mysql的utf8编码最多3个字节,所以数据插不进去. 我的解决方案是这样的 1.在mysql ...