Python数据聚合和分组运算(1)-GroupBy Mechanics
前言
Python的pandas包提供的数据聚合与分组运算功能很强大,也很灵活。《Python for Data Analysis》这本书第9章详细的介绍了这方面的用法,但是有些细节不常用就容易忘记,遂打算把书中这部分内容总结在博客里,以便复习查看。根据书中的章节,这部分知识包括以下四部分:
1.GroupBy Mechanics(groupby技术)
2.Data Aggregation(数据聚合)
3.Group-wise Operation and Transformation(分组级运算和转换)
4.Pivot Tables and Cross-Tabulation(透视表和交叉表)
本文是第一部分,介绍groupby技术。
一、分组原理
核心:
1.不论分组键是数组、列表、字典、Series、函数,只要其与待分组变量的轴长度一致都可以传入groupby进行分组。
2.默认axis=0按行分组,可指定axis=1对列分组。
对数据进行分组操作的过程可以概括为:split-apply-combine三步:
1.按照键值(key)或者分组变量将数据分组。
2.对于每组应用我们的函数,这一步非常灵活,可以是python自带函数,可以是我们自己编写的函数。
3.将函数计算后的结果聚合。
图1:分组聚合原理(图片来自《Python for Data Analysis》page 252)
import pandas as pd
import numpy as np df = pd.DataFrame({'key1' : ['a', 'a', 'b', 'b', 'a'],
'key2' : ['one', 'two', 'one', 'two', 'one'],
'data1' : np.random.randn(5),
'data2' : np.random.randn(5)})
我们将key1当做我们的分组键值,对data1进行分组,再求每组的均值:
grouped = df['data1'].groupby(df['key1'])
语法很简单,但是这里需要注意grouped的数据类型,它不在是一个数据框,而是一个GroupBy对象。
grouped
实际上,在这一步,我们并没有进行任何计算仅仅是创建用key1分组后创建了一个GroupBy对象,我们后面函数的任何操作都是基于这个对象的。
求均值:
grouped.mean()
刚刚我们只是用了key1进行了分组,我们也可以使用两个分组变量,并且通过unstack方法进行结果重塑:
means = df['data1'].groupby([df['key1'], df['key2']]).mean()
means
means.unstack
以上我们的分组变量都是df内部的Series,实际上只要是和key1等长的数组也可以:
states = np.array(['Ohio', 'California', 'California', 'Ohio', 'Ohio'])
years = np.array([2005, 2005, 2006, 2005, 2006])
df['data1'].groupby([states, years]).mean()
二、对分组进行迭代
GroupBy对象支持迭代操作,会产生一个由分组变量名和数据块组成的二元元组:
for name, group in df.groupby('key1'):
print name
print group
如果分组变量有两个:
for (k1,k2), group in df.groupby(['key1','key2']):
print k1,k2
print group
我们可以将上面的结果转化为list或者dict,来看看结果是什么样的:
list(df.groupby(['key1','key2']))
看不太清楚,我们来看看这个列表的第一个元素:
list(df.groupby(['key1','key2']))[0]
同样,我们也可以将结果转化为dict(字典):
dict(list(df.groupby(['key1','key2'])))
dict(list(df.groupby(['key1','key2'])))[('a','one')]
以上都是基于行进行分组,因为默认情况下groupby是在axis=0方向(行方向)进行分组,我们可以指定axis=1方向(列方向)进行分组:
grouped=df.groupby(df.dtypes,axis=1)
list(grouped)[0]
dict(list(grouped))
注意,
'''下面两段语句功能一样'''
df.groupby('key1')['data1']
df.data1.groupby(df.key1)
三、通过字典进行分组
people = pd.DataFrame(np.random.randn(5, 5),
columns=['a', 'b', 'c', 'd', 'e'],
index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis'])
people.ix[2:3, ['b', 'c']] = np.nan # 添加缺失值
people
假如,我们想按列进行聚合,该怎么操作呢?
我们根据实际情况,对列名建立字典,然后将此字典传入groupby,切记指定axis=1,因为我们是对列进行分组聚合:
mapping = {'a': 'red', 'b': 'red', 'c': 'blue',
'd': 'blue', 'e': 'red', 'f' : 'orange'}
by_columns=people.groupby(mapping,axis=1)
by_columns.mean()
既然我们可以通过传入字典来对列进行分组,那么肯定也可以通过传入Series来对列进行分组了(Series中的index就相当字典中的key嘛):
map_series = pd.Series(mapping)
people.groupby(map_series,axis=1).count()
四、通过函数进行分组
刚刚我们分组时利用了dict和series建立映射,对于一些复杂的需求,我们可以直接对groupby函数传递函数名来进行分组,以刚才的people数据为例,如果我们想按行分组,分组的key是每个人名的字母长度,该怎么做呢?比较直接的想法是相对每个名字求长度,建立一个数组,然后将这个数组传入groupby,我们来试验一下:
l=[len(x) for x in people.index]
people.groupby(l).count()
方案可行,那么有没有更快捷更优美的方法呢?当然有啦,我们只需将len这个函数名传给groupby即可:
people.groupby(len).count()
除了传递函数,我们也可以将函数和dict,series,array一起使用,毕竟最后都会统统转化为数组:
key_list = ['one', 'one', 'one', 'two', 'two']
people.groupby([len, key_list]).min()
五、根据索引级别分组
刚刚我们的数据索引只有一级,当数据有多级索引时,可以通过level指定我们想要分组的索引,注意要使用axis=1表示按列:
columns = pd.MultiIndex.from_arrays([['Asian', 'Asian', 'Asian', 'America', 'America'],
['China','Japan','Singapore','United States','Canada']], names=['continent', 'country'])
hier_df = pd.DataFrame(np.random.randn(4, 5), columns=columns)
hier_df
我们按洲进行分组求和:
Python数据聚合和分组运算(1)-GroupBy Mechanics的更多相关文章
- Python 数据分析(二 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识
Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4 ...
- 【学习】数据聚合和分组运算【groupby】
分组键可以有多种方式,且类型不必相同 列表或数组, 某长度与待分组的轴一样 表示DataFrame某个列名的值 字典或Series,给出待分组轴上的值与分组名之间的对应关系 函数用于处理轴索引或索引中 ...
- Python数据聚合和分组运算(2)-Data Aggregation
在上一篇博客里我们讲解了在python里运用pandas对数据进行分组,这篇博客将接着讲解对分组后的数据进行聚合. 1.python 中经过优化的groupy方法 先读入本文要使用的数据集tips. ...
- 《python for data analysis》第九章,数据聚合与分组运算
# -*- coding:utf-8 -*-# <python for data analysis>第九章# 数据聚合与分组运算import pandas as pdimport nump ...
- Python之数据聚合与分组运算
Python之数据聚合与分组运算 1. 关系型数据库方便对数据进行连接.过滤.转换和聚合. 2. Hadley Wickham创建了用于表示分组运算术语"split-apply-combin ...
- Python 数据分析—第九章 数据聚合与分组运算
打算从后往前来做笔记 第九章 数据聚合与分组运算 分组 #生成数据,五行四列 df = pd.DataFrame({'key1':['a','a','b','b','a'], 'key2':['one ...
- 《利用python进行数据分析》读书笔记--第九章 数据聚合与分组运算(一)
http://www.cnblogs.com/batteryhp/p/5046450.html 对数据进行分组并对各组应用一个函数,是数据分析的重要环节.数据准备好之后,通常的任务就是计算分组统计或生 ...
- 利用python进行数据分析之数据聚合和分组运算
对数据集进行分组并对各分组应用函数是数据分析中的重要环节. group by技术 pandas对象中的数据会根据你所提供的一个或多个键被拆分为多组,拆分操作是在对象的特定轴上执行的,然后将一个函数应用 ...
- 利用Python进行数据分析-Pandas(第六部分-数据聚合与分组运算)
对数据集进行分组并对各组应用一个函数(无论是聚合还是转换),通常是数据分析工作中的重要环节.在将数据集加载.融合.准备好之后,通常是计算分组统计或生成透视表.pandas提供了一个灵活高效的group ...
随机推荐
- 5.solr学习速成之语法
常用查询参数 q - 查询字符串,必须的. fl - 指定返回那些字段内容,用逗号或空格分隔多个. start - 返回第一条记录在完整找到结果中的偏移位置,0开始. rows - 指定返回 ...
- Python函数的进阶
一 函数的动态参数 *agrs 位置参数动态传参 *args 接收多个位置参数 def func(*args): print(args) func("女儿国","西 ...
- IOS ipa安装不上 e8000087
iPhone5是32位的,所以按照64位编译出来的32位不支持,下面3种方案的,选择第3中就可以了. 5S是64位. e8000087: Your iOS device does not suppor ...
- MVC,MVP 和 MVVM 的详解
一.MVC MVC模式的意思是,软件可以分成三个部分. 视图(View):用户界面. 控制器(Controller):业务逻辑 模型(Model):数据保存 各部分之间的通信方式如下. View 传送 ...
- 魔戒(思维+bfs)
Description 蓝色空间号和万有引力号进入了四维水洼,发现了四维物体--魔戒. 这里我们把飞船和魔戒都抽象为四维空间中的一个点,分别标为 "S" 和 "E&quo ...
- OSCache安装
OSCache是一个基于web应用的组件,他的安装工作主要是对web应用进行配置,大概的步骤如下: 1. 下载.解压缩OSCachehttps://java.net/downloads/oscache ...
- https ssl
HTTPS(全称:Hyper Text Transfer Protocol over Secure Socket Layer),是以安全为目标的HTTP通道,简单讲是HTTP的安全版.即HTTP下加入 ...
- Mac hook—DYLD_INSERT_LIBRARIES
[Mac hook—DYLD_INSERT_LIBRARIES] 1.gcc生成dylib. gcc -dynamiclib -o mysharedlib.dylib mysharedlib.c 2. ...
- Hadoop之HDFS(二)HDFS基本原理
HDFS 基本 原理 1,为什么选择 HDFS 存储数据 之所以选择 HDFS 存储数据,因为 HDFS 具有以下优点: 1.高容错性 数据自动保存多个副本.它通过增加副本的形式,提高容错性. 某一 ...
- codeforces:Helga Hufflepuff's Cup
题目大意:有一个包含n个顶点的无向无环连通图G,图中每个顶点都允许有一个值type,type的范围是1~m.有一个特殊值k,若一个顶点被赋值为k,则所有与之相邻的顶点只能被赋小于k的值.最多有x个顶点 ...