[SCOI2014]方伯伯运椰子
01分数规划思维题。
题中要求交通总量不减少,那么如果总量增加的话,总费用就会增加,所以一定不是更优的解。那么总量守恒。
这是不是就想到了网络流?对于每一个节点流入量等于流出量。然后就是很有思维的一个转化了:把压缩看成退流,把扩容看成增广。
边(x, y)一次压缩,就建一条y -> x,容量为a - d的边。
边(x, y)一次增广,就建一条x -> y,容量为b + d的边。也就是一次调整多出来的费用。那么这样建完图后,图中的一个环就代表一种调整方案!
回头看题,让求某一个比值最小,那一定会想到01分数规划,令ans = max((X - Y) / k),那么ans >= (X - Y) / k,于是有ans * k + Y - X >= 0。按上述的建图,Y - X就是环上的边权和,k就是环中的点数(边数),所以这个式子相当于每经过一条边,这条边的边权就加一个ans,那么ans * k + Y - X >= 0就可以写成Σ(ans + ei) >= 0。二分的时候,如果存在负环,说明mid取小了,向右二分;否则向左二分。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-;
const int maxn = 5e3 + ;
const int maxe = 3e3 + ;
inline ll read()
{
ll ans = ;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = ans * + ch - ''; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < ) x = -x, putchar('-');
if(x >= ) write(x / );
putchar(x % + '');
} int n, m;
struct Edge
{
int nxt, to, w;
}e[maxe << ];
int head[maxn], ecnt = -;
void addEdge(int x, int y, int w)
{
e[++ecnt] = (Edge){head[x], y, w};
head[x] = ecnt;
} db dis[maxn];
bool vis[maxn], mak[maxn];
bool spfa(int now, db x)
{
vis[now] = mak[now] = ;
for(int i = head[now]; i != -; i = e[i].nxt)
{
if(dis[e[i].to] > dis[now] + e[i].w + x)
{
dis[e[i].to] = dis[now] + e[i].w + x;
if(vis[e[i].to]) return ;
if(spfa(e[i].to, x)) return ;
}
}
vis[now] = ;
return ;
} bool judge(db x)
{
Mem(vis, ); Mem(mak, );
for(int i = ; i <= n + ; ++i)
if(!mak[i])
{
if(spfa(i, x)) return ;
}
return ;
} int main()
{
Mem(head, -);
n = read(); m = read();
for(int i = ; i <= m; ++i)
{
int x = read(), y = read(), a = read(), b = read(), c = read(), d = read();
if(c) addEdge(y, x, a - d);
addEdge(x, y, b + d);
}
db L = , R = 1e5;
while(R - L > eps)
{
db mid = (L + R) / 2.00;
if(judge(mid)) L = mid;
else R = mid;
}
printf("%.2lf\n", L);
return ;
}
[SCOI2014]方伯伯运椰子的更多相关文章
- bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 144 Solved: 78[Submit][Status ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]
3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...
- bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 594 Solved: 360[Submit][Statu ...
- 3597: [Scoi2014]方伯伯运椰子[分数规划]
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MB Submit: 404 Solved: 249 [Submit][Sta ...
- bzoj 3597: [Scoi2014]方伯伯运椰子
Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Ou ...
- bzoj 3597 [Scoi2014] 方伯伯运椰子 - 费用流 - 二分答案
题目传送门 传送门 题目大意 给定一个费用流,每条边有一个初始流量$c_i$和单位流量费用$d_i$,增加一条边的1单位的流量需要花费$b_i$的代价而减少一条边的1单位的流量需要花费$a_i$的代价 ...
- 2019.03.28 bzoj3597: [Scoi2014]方伯伯运椰子(01分数规划)
传送门 题意咕咕咕有点麻烦不想写 思路: 考虑加了多少一定要压缩多少,这样可以改造边. 于是可以通过分数规划+spfaspfaspfa解决. 代码: #include<bits/stdc++.h ...
- BZOJ3597 SCOI2014方伯伯运椰子(分数规划+spfa)
即在总流量不变的情况下调整每条边的流量.显然先二分答案变为求最小费用.容易想到直接流量清空跑费用流,但复杂度略有些高. 首先需要知道(不知道也行?)一种平时基本不用的求最小费用流的算法——消圈法.算法 ...
- Bzoj3597: [Scoi2014]方伯伯运椰子
题面 传送门 Sol 消圈定理:如果一个费用流网络的残量网络有负环,那么这个费用流不优 于是这个题就可以建出残量网络,然后分数规划跑负环了 # include <bits/stdc++.h> ...
随机推荐
- mysql 研发规范
1. 命名 a) 有意义. b) 数据库.表,都用小写,仅使用下划线和小写字母. c) 索引以idx_开头. d) 命名不要过长,尽量少于25个字符. e) 不要使用保留 ...
- Angular4+NodeJs+MySQL 入门-05 接口调用
接口调用 今天讲一下,如果在前端页面上通过调用后台接口,返回来的数据.把前面的几章结合起来. 这里所有用的代码在 https://github.com/xiaotuni/angular-map-htt ...
- 牛客网Java刷题知识点之HashMap的实现原理、HashMap的存储结构、HashMap在JDK1.6、JDK1.7、JDK1.8之间的差异以及带来的性能影响
不多说,直接上干货! 福利 => 每天都推送 欢迎大家,关注微信扫码并加入我的4个微信公众号: 大数据躺过的坑 Java从入门到架构师 人工智能躺过的坑 ...
- git读书笔记以及使用技巧
[添加文件] git add 把文件修改添加到暂存区 git commit -m '' 把暂存区的所有内容提交到当前分支 [查看历史] git log 查看提交历史 git log -- ...
- 深入理解JavaScript系列(17):面向对象编程之概论
介绍 在本篇文章,我们考虑在ECMAScript中的面向对象编程的各个方面(虽然以前在许多文章中已经讨论过这个话题).我们将更多地从理论方面看这些问题. 特别是,我们会考虑对象的创建算法,对象(包括基 ...
- [转]Using NLog for ASP.NET Core to write custom information to the database
本文转自:https://github.com/NLog/NLog/issues/1366 In the previous versions of NLog it was easily possibl ...
- 跨域策略文件crossdomain.xml文件
使用crossdomain.xml让Flash可以跨域传输数据 一.crossdomain.xml文件的作用 跨域,顾名思义就是需要的资源不在自己的域服务器上,需要访问其他域服务器.跨域策略文件 ...
- 4、Angular2 pipe
1. stateless pipe 2.stateful pipe
- 02.ArrayList和HashTable
ArrayList集合 数组的缺点: (1).数组只能存储相同类型的数据. (2).数组的长度要在定义时确定. 集合的好处: (1).集合可以存储多种不同类型的数据. (2).集合的长度是可以任意改变 ...
- mysql 乱码问题的捣鼓
mysql在ubuntu的终端下出现中文乱码的问题: 先学着在不改数据库的情况下对my.cnf配置文件进行修改, 主要的是设置 default-character-set=utf8 但是设置完后数据库 ...