python3 破解 geetest(极验)的滑块验证码
Kernel_wu
快速学习的实践者
python3 破解 geetest(极验)的滑块验证码 from selenium import webdriver
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.common.action_chains import ActionChains
import PIL.Image as image
import time,re, random
import requests
try:
from StringIO import StringIO
except ImportError:
from io import StringIO #爬虫模拟的浏览器头部信息
agent = 'Mozilla/5.0 (Windows NT 5.1; rv:33.0) Gecko/20100101 Firefox/33.0'
headers = {
'User-Agent': agent
} # 根据位置对图片进行合并还原
# filename:图片
# location_list:图片位置
#内部两个图片处理函数的介绍
#crop函数带的参数为(起始点的横坐标,起始点的纵坐标,宽度,高度)
#paste函数的参数为(需要修改的图片,粘贴的起始点的横坐标,粘贴的起始点的纵坐标)
def get_merge_image(filename,location_list):
#打开图片文件
im = image.open(filename)
#创建新的图片,大小为260*116
new_im = image.new('RGB', (260,116))
im_list_upper=[]
im_list_down=[]
# 拷贝图片
for location in location_list:
#上面的图片
if location['y']==-58:
im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,166)))
#下面的图片
if location['y']==0:
im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58)))
new_im = image.new('RGB', (260,116))
x_offset = 0
#黏贴图片
for im in im_list_upper:
new_im.paste(im, (x_offset,0))
x_offset += im.size[0]
x_offset = 0
for im in im_list_down:
new_im.paste(im, (x_offset,58))
x_offset += im.size[0]
return new_im #下载并还原图片
# driver:webdriver
# div:图片的div
def get_image(driver,div):
#找到图片所在的div
background_images=driver.find_elements_by_xpath(div)
location_list=[]
imageurl=''
#图片是被CSS按照位移的方式打乱的,我们需要找出这些位移,为后续还原做好准备
for background_image in background_images:
location={}
#在html里面解析出小图片的url地址,还有长高的数值
location['x']=int(re.findall("background-image: url\(\"(.*)\"\); background-position: (.*)px (.*)px;",background_image.get_attribute('style'))[0][1])
location['y']=int(re.findall("background-image: url\(\"(.*)\"\); background-position: (.*)px (.*)px;",background_image.get_attribute('style'))[0][2])
imageurl=re.findall("background-image: url\(\"(.*)\"\); background-position: (.*)px (.*)px;",background_image.get_attribute('style'))[0][0]
location_list.append(location)
#替换图片的后缀,获得图片的URL
imageurl=imageurl.replace("webp","jpg")
#获得图片的名字
imageName = imageurl.split('/')[-1]
#获得图片
session = requests.session()
r = session.get(imageurl, headers = headers, verify = False)
#下载图片
with open(imageName, 'wb') as f:
f.write(r.content)
f.close()
#重新合并还原图片
image=get_merge_image(imageName, location_list)
return image #对比RGB值
def is_similar(image1,image2,x,y):
pass
#获取指定位置的RGB值
pixel1=image1.getpixel((x,y))
pixel2=image2.getpixel((x,y))
for i in range(0,3):
# 如果相差超过50则就认为找到了缺口的位置
if abs(pixel1[i]-pixel2[i])>=50:
return False
return True #计算缺口的位置
def get_diff_location(image1,image2):
i=0
# 两张原始图的大小都是相同的260*116
# 那就通过两个for循环依次对比每个像素点的RGB值
# 如果相差超过50则就认为找到了缺口的位置
for i in range(0,260):
for j in range(0,116):
if is_similar(image1,image2,i,j)==False:
return i #根据缺口的位置模拟x轴移动的轨迹
def get_track(length):
pass
list=[]
#间隔通过随机范围函数来获得,每次移动一步或者两步
x=random.randint(1,3)
#生成轨迹并保存到list内
while length-x>=5:
list.append(x)
length=length-x
x=random.randint(1,3)
#最后五步都是一步步移动
for i in range(length):
list.append(1)
return list #滑动验证码破解程序
def main():
#打开火狐浏览器
driver = webdriver.Firefox()
#用火狐浏览器打开网页
driver.get("http://www.geetest.com/exp_embed")
#等待页面的上元素刷新出来
WebDriverWait(driver, 30).until(lambda the_driver: the_driver.find_element_by_xpath("//div[@class='gt_slider_knob gt_show']").is_displayed())
WebDriverWait(driver, 30).until(lambda the_driver: the_driver.find_element_by_xpath("//div[@class='gt_cut_bg gt_show']").is_displayed())
WebDriverWait(driver, 30).until(lambda the_driver: the_driver.find_element_by_xpath("//div[@class='gt_cut_fullbg gt_show']").is_displayed())
#下载图片
image1=get_image(driver, "//div[@class='gt_cut_bg gt_show']/div")
image2=get_image(driver, "//div[@class='gt_cut_fullbg gt_show']/div")
#计算缺口位置
loc=get_diff_location(image1, image2)
#生成x的移动轨迹点
track_list=get_track(loc)
#找到滑动的圆球
element=driver.find_element_by_xpath("//div[@class='gt_slider_knob gt_show']")
location=element.location
#获得滑动圆球的高度
y=location['y']
#鼠标点击元素并按住不放
print ("第一步,点击元素")
ActionChains(driver).click_and_hold(on_element=element).perform()
time.sleep(0.15)
print ("第二步,拖动元素")
track_string = ""
for track in track_list:
#不能移动太快,否则会被认为是程序执行
track_string = track_string + "{%d,%d}," % (track, y - 445)
#xoffset=track+22:这里的移动位置的值是相对于滑动圆球左上角的相对值,而轨迹变量里的是圆球的中心点,所以要加上圆球长度的一半。
#yoffset=y-445:这里也是一样的。不过要注意的是不同的浏览器渲染出来的结果是不一样的,要保证最终的计算后的值是22,也就是圆球高度的一半
ActionChains(driver).move_to_element_with_offset(to_element=element, xoffset=track+22, yoffset=y-445).perform()
#间隔时间也通过随机函数来获得,间隔不能太快,否则会被认为是程序执行
time.sleep(random.randint(10,50)/100)
print (track_string)
#xoffset=21,本质就是向后退一格。这里退了5格是因为圆球的位置和滑动条的左边缘有5格的距离
ActionChains(driver).move_to_element_with_offset(to_element=element, xoffset=21, yoffset=y-445).perform()
time.sleep(0.1)
ActionChains(driver).move_to_element_with_offset(to_element=element, xoffset=21, yoffset=y-445).perform()
time.sleep(0.1)
ActionChains(driver).move_to_element_with_offset(to_element=element, xoffset=21, yoffset=y-445).perform()
time.sleep(0.1)
ActionChains(driver).move_to_element_with_offset(to_element=element, xoffset=21, yoffset=y-445).perform()
time.sleep(0.1)
ActionChains(driver).move_to_element_with_offset(to_element=element, xoffset=21, yoffset=y-445).perform()
print ("第三步,释放鼠标")
#释放鼠标
ActionChains(driver).release(on_element=element).perform()
time.sleep(3)
#点击验证
# submit = driver.find_element_by_xpath("//div[@class='gt_ajax_tip success']")
# print(submit.location)
# time.sleep(5)
#关闭浏览器,为了演示方便,暂时注释掉.
#driver.quit() #主函数入口
if __name__ == '__main__':
pass
main()
python3 破解 geetest(极验)的滑块验证码的更多相关文章
- GeeTest 极验验证
前台Html页面 <script src="http://libs.baidu.com/jquery/1.9.0/jquery.js"></script> ...
- Geetest 极验验证 验证图片拼图
今天要求做一个跟魅族官网登陆的一个验证效果一样的界面 是一个拖动滑动图片进行拼图 那个效果看着很好,刚开始拿到不知道好不好做 从网上搜资料发现这是一种“极验验证码” 让用户通过滑动拼图来进行验证. 网 ...
- GEETEST极验召集互联网大佬齐聚光谷,共同探讨交互安全问题
全球互联网技术在飞速发展的同时,网络安全事件也随之频发.除了直接带来经济损失的网络恶意攻击之外,企业在多个方面也遭受着不同程度的网络恶意攻击,包括品牌形象.管理时间.企业竞争力.客户成交量.用户行为等 ...
- 使用Python + Selenium破解滑块验证码
在前面一篇博客<使用 Python + Selenium 打造浏览器爬虫>中,我介绍了 Selenium 的基本用法和爬虫开发过程中经常使用的一些小技巧,利用这些写出一个浏览器爬虫已经完全 ...
- 对极验geetest滑块验证码图片还原算法的研究
免责声明 本文章所提到的技术仅用于学习用途,禁止使用本文章的任何技术进行发起网络攻击.非法利用等网络犯罪行为,一切信息禁止用于任何非法用途.若读者利用文章所提到的技术实施违法犯罪行为,其责任一概由读者 ...
- vue_drf之实现极验滑动验证码
一.需求 1,场景 我们在很多登录和注册场景里,为了避免某些恶意攻击程序,我们会添加一些验证码,也就是行为验证,让我们相信现在是一个人在交互,而不是一段爬虫程序.现在市面上用的比较多的,比较流行的是极 ...
- 爬虫进阶教程:极验(GEETEST)验证码破解教程
摘要 爬虫最大的敌人之一是什么?没错,验证码!Geetest作为提供验证码服务的行家,市场占有率还是蛮高的.遇到Geetest提供的滑动验证码怎么破?授人予鱼不如授人予渔,接下来就为大家呈现本教程的精 ...
- 破解极验(geetest)验证码
破解极验(geetest)验证码 这是两年前的帖子: http://www.v2ex.com/t/138479 一个月前的破解程序,我没用过 asp.net ,不知道是不是真的破解了, demo ...
- selenium+java破解极验滑动验证码
摘要 分析验证码素材图片混淆原理,并采用selenium模拟人拖动滑块过程,进而破解验证码. 人工验证的过程 打开威锋网注册页面(https://passport.feng.com/?r=user/r ...
随机推荐
- iOS开发之谓词Predicate和对象数组的排序
我们在开发中经常使用的Predicate谓词,主要是正则表达式的使用,今天给大家简单的讲讲怎样去使用谓词. 因为内容比较简单,所以直接上代码展示: NSMutableArray *people_arr ...
- Android 进阶15:HandlerThread 使用场景及源码解析
眼睛困得要死,但今天的计划不完成又怎么能睡呢?明日复明日,明日何其多啊! 读完本文你将了解: HandlerThread 简介 HandlerThread 源码 HandlerThread 的使用场景 ...
- Kotlin For Gank.io (干货集中营Kotlin实现)
介绍 Kotlin,现在如火如荼,所以花了一点时间把之前的项目用Kotlin重构一下 原项目地址:https://github.com/onlyloveyd/GankIOClient 对应Kotlin ...
- ng 自定义服务
服务的本质是对象. 创建服务的常见方式:factory(返回对象) service (方法.属性)constant(常量服务) value(变量服务) 1.factoryapp.factory('服务 ...
- 快排的python实现
快排的python实现 #python 2.7 def quick_sort(L): if len(L) <= 1: return L else: return quick_sort([lt f ...
- 【解题报告】[动态规划]RQNOJ - PID72 / 拔河比赛
原题地址:http://www.rqnoj.cn/problem/72 解题思路:基本的01背包问题. 要求的就是在这些人中选出一些人,使得这些人的体重的和 不超过所有人的体重的一半 并最大. 代码: ...
- VC++ windows开机自启动设置
设置开机启动 很多软件要求软件能够在开机时自启动,下面讲讲如何设置开机自启动. Windows设置程序的开机启动的方法有很多,这里只讲其中的一种,该方法同时适用于32位和64位的操作系统,只需将需要开 ...
- Windows编程
本文整理自百科.知乎与 科学家的世界 问题一:为什么开发windows应用程序不用c 而用.net,java,c++? 用 c+windows API 开发windows 应用程序 比用.net, ...
- 《Troubleshooting SQL Server》读书笔记-内存管理
自调整的数据库引擎(Self-tuning Database Engine) 长期以来,微软都致力于自调整(Self-Tuning)的SQL Server数据库引擎,用以降低产品的总拥有成本.从SQL ...
- ubantu 虚拟机无法查看windows共享目录
初学linux,安装好虚拟机,安装好ubantu系统,启动系统后无法查看windows共享目录. 原因是没有安装 vmware tools 教程地址:http://www.linuxidc.com/L ...