【LOJ6436】【PKUSC2018】神仙的游戏(NTT)

题面

LOJ

题解

看到\(zsy\)从\(PKUSC\)回来就秒掉了这种神仙题

吓得我也赶快看了看\(PKUSC\)都有些什么神仙题

然后就找到了这样一道神仙题

考虑一个奇怪的暴力:

我们只需要对于\(0/1\)进行匹配

如果出现了\(0/1\)匹配的情况,那么当前长度一定不能构成\(border\)

的确,这样子肯定是对的,

但是我们似乎有一些奇怪的情况没有考虑清楚

如果两个串出现了交集,似乎不能构成\(border\)的情况就会增加诶

这样考虑很不清楚,我们从另外一个角度考虑\(border\)

如果存在长度为\(len\)的\(border\)

我们把字符串按照位置对于\(n-len\)的余数分类

显然在同一类中的所有字符都要一样。

证明?画下图就清楚了。

现在有了这个结论,我们再来考虑这个问题。

我们要检查一个长度为\(len\)的\(border\)是否存在

只需要检查是否出现了分组之后不满足同组相同的情况

现在只需要把串翻转,然后将正反两个串的分别以\(0/1\)来构建生成函数

做个卷积\(check\)一下就好了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MOD 998244353
#define MAX 3000000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll ans;
int N,n,l;
int r[MAX],W[MAX],A[MAX],B[MAX],s[MAX];
char c[MAX];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
void NTT(int *P,int opt)
{
for(int i=1;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
int w=fpow(3,(MOD-1)/(i<<1));W[0]=1;
for(int k=1;k<i;++k)W[k]=1ll*W[k-1]*w%MOD;
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
{
int X=P[j+k],Y=1ll*P[i+j+k]*W[k]%MOD;
P[j+k]=(X+Y)%MOD;P[i+j+k]=(X+MOD-Y)%MOD;
}
}
if(opt==-1)
{
reverse(&P[1],&P[N]);
for(int i=0,inv=fpow(N,MOD-2);i<N;++i)P[i]=1ll*P[i]*inv%MOD;
} }
int main()
{
scanf("%s",c);
n=strlen(c);
for(N=1;N<n+n;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=0;i<n;++i)A[i]=c[i]=='0',B[i]=c[n-i-1]=='1';
NTT(A,1);NTT(B,1);
for(int i=0;i<N;++i)A[i]=1ll*A[i]*B[i]%MOD;
NTT(A,-1);
ans=1ll*n*n;
for(int i=1;i<n;++i)
{
ans^=1ll*(n-i)*(n-i);
for(int j=i;j<n;j+=i)
if(A[n-j-1]||A[n+j-1]){ans^=1ll*(n-i)*(n-i);break;}
}
printf("%lld\n",ans);
return 0;
}

【LOJ6436】【PKUSC2018】神仙的游戏(NTT)的更多相关文章

  1. [LOJ6436][PKUSC2018]神仙的游戏

    loj description 给你一个只有01和?的字符串,问你是否存在一种把?改成01的方案使串存在一个长度为\(1-n\)的\(border\).\(n\le5\times10^5\) sol ...

  2. LOJ6436 [PKUSC2018] 神仙的游戏 【FFT】

    题目分析: 题目要求前后缀相同,把串反过来之后是一个很明显的卷积的形式.这样我们可以完成初步判断(即可以知道哪些必然不行). 然后考虑一下虽然卷积结果成立,但是存在问号冲突的情况. 箭头之间应当不存在 ...

  3. BZOJ5372: [Pkusc2018]神仙的游戏

    BZOJ5372: [Pkusc2018]神仙的游戏 https://lydsy.com/JudgeOnline/problem.php?id=5372 分析: 如果\(len\)为\(border\ ...

  4. BZOJ5372: PKUSC2018神仙的游戏

    传送门 Sol 自己还是太 \(naive\) 了,上来就构造多项式和通配符直接匹配,然后遇到 \(border\) 相交的时候就 \(gg\) 了 神仙的游戏蒟蒻还是玩不来 一个小小的性质: 存在长 ...

  5. LOJ6436. 「PKUSC2018」神仙的游戏 [NTT]

    传送门 思路 首先通过各种手玩/找规律/严谨证明,发现当\(n-i\)为border当且仅当对于任意\(k\in[0,i)\),模\(i\)余\(k\)的位置没有同时出现0和1. 换句话说,拿出任意一 ...

  6. BZOJ5372 PKUSC2018神仙的游戏(NTT)

    首先有一个想法,翻转串后直接卷积看有没有0匹配上1.但这是必要而不充分的因为在原串和翻转串中?不能同时取两个值. 先有一些结论: 如果s中长度为len的前缀是border,那么其存在|s|-len的循 ...

  7. bzoj 5372: [Pkusc2018]神仙的游戏

    Description 小D和小H是两位神仙.他们经常在一起玩神仙才会玩的一些游戏,比如"口算一个4位数是不是完全平方数". 今天他们发现了一种新的游戏:首先称s长度为len的前缀 ...

  8. [PKUSC2018]神仙的游戏(FFT)

    给定一个01?串,对所有len询问是否存在一种填法使存在长度为len的border. 首先有个套路的性质:对于一个长度为len的border,这个字符串一定有长度为n-len的循环节(最后可以不完整) ...

  9. [PKUSC2018]神仙的游戏

    题目 画一画就会发现一些奇诡的性质 首先如果\(len\)为一个\(\operatorname{border}\),那么必然对于\(\forall i\in [1,len]\),都会有\(s_i=s_ ...

  10. loj 6436 PKUSC2018 神仙的游戏

    传送门 好妙蛙 即串\(s\)长度为\(n\)首先考虑如果一个长度为\(len\)的\(border\)存在,当且仅当对所有\(i\in[1,len],s[i]=s[n-len+i]\),也就是所有模 ...

随机推荐

  1. Entity Framework中的几种加载方式

            在Entity Framework中有三种加载的方式,分别是延迟加载,自动加载和显示加载.下面用一个例子来说明:现在有两个表,一个是资料表(Reference),另外一个表是资料分类表 ...

  2. [.NET] 使用HttpClient操作HFS (HTTP File Server)

    前言 本篇文章介绍如何使用HttpClient操作HFS (HTTP File Server),为自己留个纪录也希望能帮助到有需要的开发人员.关于HTTP File Server的介绍.安装.设定,可 ...

  3. js显示对象所有属性和方法的函数

    function ShowObjProperty2( obj ) { // 用来保存所有的属性名称和值 var attributes = '' ; var methods = '' // 开始遍历 f ...

  4. Python接口测试实战5(上) - Git及Jenkins持续集成

    如有任何学习问题,可以添加作者微信:lockingfree 课程目录 Python接口测试实战1(上)- 接口测试理论 Python接口测试实战1(下)- 接口测试工具的使用 Python接口测试实战 ...

  5. 二叉树的宽度<java版>

    二叉树的宽度 思路:层序遍历的时候,记录每层的节点数量,最后取记录中的最多的数量. 代码实现: public int solution(TreeNode node){ LinkedList<Tr ...

  6. Centos安装Python3(自带pip和setuptools)

    安装zlib相关依赖 解决zipimport.ZipImportError: can't decompress data和pip3 ssl证书问题 sudo yum -y install zlib* ...

  7. 【第二章】MySQL数据库基于Centos7.3-部署

    一.MySQL数据库的官方网址: https://www.mysql.com/ https://www.oracle.com/ http://dev.mysql.com/doc/refman/5.7/ ...

  8. mysql 5.5 zip配置安装

    1.解压2.创建option文件 --defaults-file=../my.ini [mysql] # 设置mysql客户端默认字符集 default-character-set=utf8 [mys ...

  9. [寒假学习笔记](二)Python初学

    Python 学习 python的自学从几个月前断断续续地进行,想好好利用这个寒假,好好地学一学. 回顾 已学习:基本操作.函数 已有C++的一定基础,只要注意python中比较特殊的部分就行 进入正 ...

  10. Spring Task中的定时任务无法注入service的解决办法

    1.问题 因一个项目(使用的是Spring+SpringMVC+hibernate框架)需要在spring task定时任务中调用数据库操作,在使用 @Autowired注入service时后台报错, ...