【Loj#535】花火(线段树,扫描线)

题面

Loj

题解

首先如果不考虑交换任意两个数这个操作,答案就是逆序对的个数。

那么暴力就是枚举交换哪个两个数,然后用数据结构之类的东西动态维护逆序对。

但是这样还不够。

仔细观察哪些点交换了才有意义。

假设交换的位置是\(l,r\)

首先必须有\(h[l]\gt h[r]\),这个很显然,如果把一个更大的数换到了前面显然不优。

其次,\(l\)必须是前缀的最大值。

如果\(l\)不是前缀最大值,那么存在一个位置\(i\)满足\(h[i]\gt h[l]\gt h[r]\)

那么直接交换\(i,r\)显然更优。

同理,\(r\)必须是后缀的最小值。

那么,首先把所有的前缀最大值和后缀最小值预处理出来。

每次交换的时候,我们发现减少的逆序对数量就是

\(l<i<r,h[l]>h[i]>h[r]\)的所有\(i\)的个数。

发现这就是一个二维数点,用扫描线解决即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 333333
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll ans,now;
int n,a[MAX],cnt;
int st1[MAX],st2[MAX],top1,top2;
bool ins[MAX];
struct Node{int y,l,r,opt;}p[MAX<<1];
bool operator<(Node a,Node b)
{
if(a.y!=b.y)return a.y<b.y;
return a.opt<b.opt;
}
int binary1(int x)
{
int l=1,r=top1,ret=0;
while(l<=r)
{
int mid=(l+r)>>1;
if(a[st1[mid]]>a[x])ret=mid,r=mid-1;
else l=mid+1;
}
return st1[ret];
}
int binary2(int x)
{
int l=1,r=top2,ret=0;
while(l<=r)
{
int mid=(l+r)>>1;
if(a[st2[mid]]<a[x])ret=mid,r=mid-1;
else l=mid+1;
}
return st2[ret];
}
struct SegNode{int mx,tag;}t[MAX<<2];
void Modify(int now,int l,int r,int L,int R,int w)
{
if(L<=l&&r<=R){t[now].mx+=w;t[now].tag+=w;return;}
int mid=(l+r)>>1;
if(L<=mid)Modify(lson,l,mid,L,R,w);
if(R>mid)Modify(rson,mid+1,r,L,R,w);
t[now].mx=max(t[lson].mx,t[rson].mx)+t[now].tag;
}
int c[MAX];
int lb(int x){return x&(-x);}
void add(int x){while(x<=n)++c[x],x+=lb(x);}
int getsum(int x){int ret=0;while(x)ret+=c[x],x-=lb(x);return ret;}
int main()
{
//freopen("hanabi.in","r",stdin);
//freopen("hanabi.out","w",stdout);
n=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)if(i==1||a[i]>a[st1[top1]])st1[++top1]=i,ins[i]=true;
for(int i=n;i>=1;--i)if(i==n||a[i]<a[st2[top2]])st2[++top2]=i,ins[i]=true;
for(int i=1;i<=n;++i)
if(!ins[i])
{
int l=binary1(i),r=binary2(i);
if(l<i&&i<r)
{
p[++cnt]=(Node){i+1,l,i-1,+1};
p[++cnt]=(Node){r+1,l,i-1,-1};
}
}
sort(&p[1],&p[cnt+1]);
for(int i=1;i<=cnt;++i)
{
Modify(1,1,n,p[i].l,p[i].r,p[i].opt);
if(p[i].y!=p[i+1].y)ans=max(ans,1ll*t[1].mx);
}
ans<<=1;ans*=-1;
for(int i=1;i<=n;++i)add(a[i]),ans+=i-getsum(a[i]);
printf("%lld\n",ans);
return 0;
}

【Loj#535】花火(线段树,扫描线)的更多相关文章

  1. 【Codeforces720D】Slalom 线段树 + 扫描线 (优化DP)

    D. Slalom time limit per test:2 seconds memory limit per test:256 megabytes input:standard input out ...

  2. Codeforces VK CUP 2015 D. Closest Equals(线段树+扫描线)

    题目链接:http://codeforces.com/contest/522/problem/D 题目大意:  给你一个长度为n的序列,然后有m次查询,每次查询输入一个区间[li,lj],对于每一个查 ...

  3. 【POJ-2482】Stars in your window 线段树 + 扫描线

    Stars in Your Window Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11706   Accepted:  ...

  4. HDU 4419 Colourful Rectangle --离散化+线段树扫描线

    题意: 有三种颜色的矩形n个,不同颜色的矩形重叠会生成不同的颜色,总共有R,G,B,RG,RB,GB,RGB 7种颜色,问7种颜色每种颜色的面积. 解法: 很容易想到线段树扫描线求矩形面积并,但是如何 ...

  5. BZOJ-3228 棋盘控制 线段树+扫描线+鬼畜毒瘤

    3228: [Sdoi2008]棋盘控制 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 23 Solved: 9 [Submit][Status][D ...

  6. BZOJ-3225 立方体覆盖 线段树+扫描线+乱搞

    看数据范围像是个暴力,而且理论复杂度似乎可行,然后被卡了两个点...然后来了个乱搞的线段树+扫描线.. 3225: [Sdoi2008]立方体覆盖 Time Limit: 2 Sec Memory L ...

  7. hdu 5091(线段树+扫描线)

    上海邀请赛的一道题目,看比赛时很多队伍水过去了,当时还想了好久却没有发现这题有什么水题的性质,原来是道成题. 最近学习了下线段树扫描线才发现确实是挺水的一道题. hdu5091 #include &l ...

  8. POJ1151+线段树+扫描线

    /* 线段树+扫描线+离散化 求多个矩形的面积 */ #include<stdio.h> #include<string.h> #include<stdlib.h> ...

  9. POJ-1151-Atlantis(线段树+扫描线+离散化)[矩形面积并]

    题意:求矩形面积并 分析:使用线段树+扫描线...因为坐标是浮点数的,因此还需要离散化! 把矩形分成两条边,上边和下边,对横轴建树,然后从下到上扫描上去,用col表示该区间有多少个下边,sum代表该区 ...

  10. HDU 5107 线段树扫描线

    给出N个点(x,y).每一个点有一个高度h 给出M次询问.问在(x,y)范围内第k小的高度是多少,没有输出-1 (k<=10) 线段树扫描线 首先离散化Y坐标,以Y坐标建立线段树 对全部的点和询 ...

随机推荐

  1. PHP序列化serialize()和反序列化unserialize()

    所谓的序列化,就是把保存在内存中的各种对象状态或属性保存起来,在需要时可以还原出来. serialize() 可处理除了 resource 之外的任何类型返回字符串,此字符串包含了表示 value 的 ...

  2. 169.求众数 leetcode Javascript

    给定一个大小为 n 的数组,找到其中的众数.众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素. 你可以假设数组是非空的,并且给定的数组总是存在众数. 示例 1: 输入: [3,2,3] 输出: 3 ...

  3. Java学习计划

    Java学习计划&书单--2018.10.13 W3C Struts教程 W3C Spring教程 W3C Hibernate教程 <深入JavaWeb技术内幕> Java Web ...

  4. leetcode个人题解——#43 Multiply Strings

    思路:高精度乘法就可以了. 有两个错误以前没在意,1.成员属性定义时候不能进行初始化, vector<); 这样隐性调用了函数进行初始化的形式特别要注意,也是错误的: 2.容器类只有分配了空间时 ...

  5. rest_framework之渲染器

    渲染器简介 什么是渲染器 根据 用户请求URL 或 用户可接受的类型,筛选出合适的 渲染组件. 渲染器的作用 序列化.友好的展示数据 渲染器配置 首先要在settins.py中将rest_framew ...

  6. ES6的新特性(8)——数组的扩展

    数组的扩展 扩展运算符 含义 扩展运算符(spread)是三个点(...).它好比 rest 参数的逆运算,将一个数组转为用逗号分隔的参数序列. console.log(...[1, 2, 3]) / ...

  7. C# 钱数 小写 转 大写

    public class Rmb { /// <summary> /// 转换人民币大小金额 /// </summary> /// <param name="n ...

  8. Scrum立会报告+燃尽图(十一月二十一日总第二十九次):β阶段第二周分配任务

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...

  9. OOP 2.2 构造函数

    1.概念 成员函数的一种 名字与类名相同,可以有参数,没有返回值(void也不行) 作用:对对象进行初始化,如给成员函数赋初始值 如果定义时没有构造函数,则编译器生成一个默认无参数的构造函数 默认构造 ...

  10. web压力测试_(收集)

    作者:ZeldaZzz链接:http://www.zhihu.com/question/19867883/answer/89775858来源:知乎著作权归作者所有,转载请联系作者获得授权. 一个完整的 ...