J - 猪的安家

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d
& %I64u

Description

Andy和Mary养了很多猪。他们想要给猪安家。但是Andy没有足够的猪圈,很多猪只能够在一个猪圈安家。举个例子,假如有16头猪,Andy建了3个猪圈,为了保证公平,剩下1头猪就没有地方安家了。Mary生气了,骂Andy没有脑子,并让他重新建立猪圈。这回Andy建造了5个猪圈,但是仍然有1头猪没有地方去,然后Andy又建造了7个猪圈,但是还有2头没有地方去。Andy都快疯了。你对这个事情感兴趣起来,你想通过Andy建造猪圈的过程,知道Andy家至少养了多少头猪。

Input

输入包含多组测试数据。每组数据第一行包含一个整数n (n <= 10) – Andy建立猪圈的次数,解下来n行,每行两个整数ai, bi( bi <= ai <= 1000), 表示Andy建立了ai个猪圈,有bi头猪没有去处。你可以假定(ai, aj) = 1.

Output

输出包含一个正整数,即为Andy家至少养猪的数目。

Sample Input

3
3 1
5 1
7 2

Sample Output

16

解题:

先求出最小满足第一行的,如例题中3+1=4,再验证是否符合第二行。4%5!=1,所以再把4递加3,直到(4+3*x)%5==1。继续验证下一行,不过递加要变为3和5的最小公倍数,一直循环到n,最后的总的最小公倍数即是答案。

注意:1长度的限制,在OJ上,__int64 of VC is not ANSI, but you can use long long for 64-bit integer。本题要用long
long

注意:2 注意只有一组输入的情况 这样每个猪圈都是没猪的

#include<iostream>
using namespace std;
int n;
long long a[11],b[11];
long long gcd[11];
void getgcd(){
gcd[1]=a[1];
for(int t=2;t<=n;t++){
long long x=gcd[t-1],y=a[t],z;
while(1){
z=x%y;
if(z==0){
gcd[t]=gcd[t-1]*a[t]/y;
break;
}
x=y;
y=z; }
} } int main(){ long long sum;//记得都用long long 用long也会错
while(cin>>n){
sum=0;
for(int i=1;i<=n;i++){
cin>>a[i]>>b[i];
}
getgcd();
sum=b[1];//注意这里 如果换成<span style="font-family: Arial, Helvetica, sans-serif;">sum=a[1]+b[1]就会错因为可能是一组的情况那么就是输出b[1]</span>
for(int j=1;j<=n;j++){ while(1){ if(sum%a[j]==b[j])break;
else sum+=gcd[j-1];
}
}
cout<<sum<<endl;
}
return 0;
}

另外一个:思路一样

#include<iostream>
using namespace std;
int main()
{
long long int n,a,b,c,d,i;
while(cin>>n)
{
cin>>a>>b;
//b=b+a;
for(i=1;i<n;i++)
{ cin>>c>>d;
while(b%c!=d)
b+=a;
a*=c;
}
cout<<b<<endl;
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

中国剩余定理---FZU 1402 猪的安家的更多相关文章

  1. fzu 1402 猪的安家 (中国剩余定理)

     Problem 1402 猪的安家 Accept: 897    Submit: 5642Time Limit: 1000 mSec    Memory Limit : 32768 KB  Prob ...

  2. 中国剩余定理的应用:猪的安家 ->福州大学 OJ

                                                                     Problem 1402 猪的安家 Accept: 984    Su ...

  3. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

  4. BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】

    题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...

  5. [SDOI2010] 古代猪文 (快速幂+中国剩余定理+欧拉定理+卢卡斯定理) 解题报告

    题目链接:https://www.luogu.org/problemnew/show/P2480 题目背景 “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色 ...

  6. BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...

  7. BZOJ 1951 [SDOI2010]古代猪文 (组合数学+欧拉降幂+中国剩余定理)

    题目大意:求$G^{\sum_{m|n} C_{n}^{m}}\;mod\;999911659\;$的值$(n,g<=10^{9})$ 并没有想到欧拉定理.. 999911659是一个质数,所以 ...

  8. 【vijos】1164 曹冲养猪(中国剩余定理)

    https://vijos.org/p/1164 好赞orz. 对于求一组线性同余方程 x=a[i](mod m[i]) 这里任意两个m[i]和m[j]都互质 那么可以用中国剩余定理来做. 对中国剩余 ...

  9. Vijos 1164 曹冲养猪(中国剩余定理)

    P1164曹冲养猪 Accepted 标签:三国争霸[显示标签] 描写叙述 自从曹冲搞定了大象以后,曹操就開始捉摸让儿子干些事业,于是派他到中原养猪场养猪,但是曹冲满不高兴.于是在工作中马马虎虎,有一 ...

随机推荐

  1. Python + 百度Api 通过地址关键字获得格式化的地址信息

    由于用户输入是千奇百怪的,除了格式语法不合要求之外的,即便是所谓的合法数据也是五花八门.尤其是地址,所有才由此文. 百度Api注册一个账号,创建一个应用后就会有一个`ak`的参数,就够了. Pytho ...

  2. Nginx 解决504 Error 最简单的方法

    <?php // Where am I ? set_time_limit(0); 就这个多,当然了,服务器还是务求稳妥,应当结合服务器和业务需求从配置上优化,才是正理.

  3. mysql-5.7.24 在centos7安装

    搭建环境:mysql5.7.24  CentOS-7-x86_64-DVD-1804.iso  桌面版 1. 进入官网:https://dev.mysql.com/downloads/mysql/ 该 ...

  4. 【大数据实战】Logstash采集->Kafka->ElasticSearch检索

    1. Logstash概述 Logstash的官网地址为:https://www.elastic.co/cn/products/logstash,以下是官方对Logstash的描述. Logstash ...

  5. 嵌入式C语言自我修养 12:有一种宏,叫可变参数宏

    12.1 什么是可变参数宏 在上面的教程中,我们学会了变参函数的定义和使用,基本套路就是使用 va_list.va_start.va_end 等宏,去解析那些可变参数列表我们找到这些参数的存储地址后, ...

  6. 关于第11周课堂mini dc的课堂练习

    测试代码: 码云链接 import java.util.Scanner; public class MyDCTester { public static void main(String[] args ...

  7. 20155325 2016-2017-2 《Java程序设计》第十周学习总结

    教材学习内容总结 Java视频笔记 强制转换 运算符 获取特定位数的值 循环 switch(不能判断布尔型) int x = 3, y = 3, z = 3; int n = 0; switch (x ...

  8. 2017-2018-1 20155329《信息安全技术》实验二——Windows口令破解

    2017-2018-1 20155329<信息安全技术>实验二--Windows口令破解 实验原理 口令破解方法 字典破解: 指通过破解者对管理员的了解,猜测其可能使用某些信息作为密码,利 ...

  9. 20155330 2016-2017-2 《Java程序设计》第四周学习总结

    20155330 2016-2017-2 <Java程序设计>第四周学习总结 教材学习内容总结 学习目标 理解封装.继承.多态的关系 理解抽象类与接口的区别 掌握S.O.L.I.D原则 了 ...

  10. 小程序if else 判断显示隐藏

    wxml: <view> <text wx:if="{{ifnumber>80}}">{{ifnumber}}</text> <te ...