题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578  , 线段树的区间更新 + 多种操作,好题。

  虽然是比较裸的线段树,但是比较麻烦,并且有很多细节需要考虑,最后我7.3s很惊险地过了,求大神告知优化方法。


  这道题坑在有三种询问:set , add , mul。所以lazy标记要有三个,如果三个标记同时出现的处理方法——当更新set操作时,就把add标记和mul标记全部取消;当更新mul操作时,如果当前节点add标记存在,就把add标记改为:add * mul。这样的话就可以在PushDown()操作中先执行set,然后mul,最后add。

  麻烦在有三种询问:和 , 平方和 , 立方和。对于set和mul操作来说,这三种询问都比较好弄。

  对于add操作,和的话就比较好弄,按照正常方法就可以;

  平方和这样来推:(a + c)2 = a2 + c2 + 2ac  , 即sum2[rt] = sum2[rt] + (r - l + 1) * c * c + 2 * sum1[rt] * c;

  立方和这样推:(a + c)3 = a3 + c3 + 3a(a2 + ac) , 即sum3[rt] = sum3[rt] + (r - l + 1) * c * c * c + 3 * c * (sum2[rt] + sum1[rt] * c);

  几个注意点:add标记取消的时候是置0,mul标记取消的时候是置1;在PushDown()中也也要注意取消标记,如set操作中取消add和mul,mul操作中更新add; 在add操作中要注意sum3 , sum2 , sum1的先后顺序,一定是先sum3 , 然后sum2 , 最后sum1; int容易爆,还是用LL要保险一点; 最后就是运算较多,不要漏掉东西。

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <string>
#include <string.h>
#include <algorithm>
using namespace std;
#define LL __int64
#define eps 1e-8
#define INF INT_MAX
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int MOD = ;
const int maxn = + ;
const int N = ;
LL add[maxn << ] , set[maxn << ] , mul[maxn << ];
LL sum1[maxn << ] , sum2[maxn << ] , sum3[maxn << ];
void PushUp(int rt)
{
sum1[rt] = (sum1[rt << ] + sum1[rt << | ]) % MOD;
sum2[rt] = (sum2[rt << ] + sum2[rt << | ]) % MOD;
sum3[rt] = (sum3[rt << ] + sum3[rt << | ]) % MOD;
}
void build(int l , int r , int rt)
{
add[rt] = set[rt] = ;
mul[rt] = ;
if(l == r) {
sum1[rt] = sum2[rt] = sum3[rt] = ;
return;
}
int m = (l + r) >> ;
build(lson);
build(rson);
PushUp(rt);
}
void PushDown(int rt , int len)
{
if(set[rt]) {
set[rt << ] = set[rt << | ] = set[rt];
add[rt << ] = add[rt << | ] = ; //注意这个也要下放
mul[rt << ] = mul[rt << | ] = ;
LL tmp = ((set[rt] * set[rt]) % MOD) * set[rt] % MOD;
sum1[rt << ] = ((len - (len >> )) % MOD) * (set[rt] % MOD) % MOD;
sum1[rt << | ] = ((len >> ) % MOD) * (set[rt] % MOD) % MOD;
sum2[rt << ] = ((len - (len >> )) % MOD) * ((set[rt] * set[rt]) % MOD) % MOD;
sum2[rt << | ] = ((len >> ) % MOD) * ((set[rt] * set[rt]) % MOD) % MOD;
sum3[rt << ] = ((len - (len >> )) % MOD) * tmp % MOD;
sum3[rt << | ] = ((len >> ) % MOD) * tmp % MOD;
set[rt] = ;
}
if(mul[rt] != ) { //这个就是mul[rt] != 1 , 当时我这里没注意所以TLE了
mul[rt << ] = (mul[rt << ] * mul[rt]) % MOD;
mul[rt << | ] = (mul[rt << | ] * mul[rt]) % MOD;
if(add[rt << ]) //注意这个也要下放
add[rt << ] = (add[rt << ] * mul[rt]) % MOD;
if(add[rt << | ])
add[rt << | ] = (add[rt << | ] * mul[rt]) % MOD;
LL tmp = (((mul[rt] * mul[rt]) % MOD * mul[rt]) % MOD);
sum1[rt << ] = (sum1[rt << ] * mul[rt]) % MOD;
sum1[rt << | ] = (sum1[rt << | ] * mul[rt]) % MOD;
sum2[rt << ] = (sum2[rt << ] % MOD) * ((mul[rt] * mul[rt]) % MOD) % MOD;
sum2[rt << | ] = (sum2[rt << | ] % MOD) * ((mul[rt] * mul[rt]) % MOD) % MOD;
sum3[rt << ] = (sum3[rt << ] % MOD) * tmp % MOD;
sum3[rt << | ] = (sum3[rt << | ] % MOD) * tmp % MOD;
mul[rt] = ;
}
if(add[rt]) {
add[rt << ] += add[rt]; //add是+= , mul是*=
add[rt << | ] += add[rt];
LL tmp = (add[rt] * add[rt] % MOD) * add[rt] % MOD; //注意sum3 , sum2 , sum1的先后顺序
sum3[rt << ] = (sum3[rt << ] + (tmp * (len - (len >> )) % MOD) + * add[rt] * ((sum2[rt << ] + sum1[rt << ] * add[rt]) % MOD)) % MOD;
sum3[rt << | ] = (sum3[rt << | ] + (tmp * (len >> ) % MOD) + * add[rt] * ((sum2[rt << | ] + sum1[rt << | ] * add[rt]) % MOD)) % MOD;
sum2[rt << ] = (sum2[rt << ] + ((add[rt] * add[rt] % MOD) * (len - (len >> )) % MOD) + ( * sum1[rt << ] * add[rt] % MOD)) % MOD;
sum2[rt << | ] = (sum2[rt << | ] + (((add[rt] * add[rt] % MOD) * (len >> )) % MOD) + ( * sum1[rt << | ] * add[rt] % MOD)) % MOD;
sum1[rt << ] = (sum1[rt << ] + (len - (len >> )) * add[rt]) % MOD;
sum1[rt << | ] = (sum1[rt << | ] + (len >> ) * add[rt]) % MOD;
add[rt] = ;
}
}
void update(int L , int R , int c , int ch , int l , int r , int rt)
{
if(L <= l && R >= r) {
if(ch == ) {
set[rt] = c;
add[rt] = ;
mul[rt] = ;
sum1[rt] = ((r - l + ) * c) % MOD;
sum2[rt] = ((r - l + ) * ((c * c) % MOD)) % MOD;
sum3[rt] = ((r - l + ) * (((c * c) % MOD) * c % MOD)) % MOD;
} else if(ch == ) {
mul[rt] = (mul[rt] * c) % MOD;
if(add[rt])
add[rt] = (add[rt] * c) % MOD;
sum1[rt] = (sum1[rt] * c) % MOD;
sum2[rt] = (sum2[rt] * (c * c % MOD)) % MOD;
sum3[rt] = (sum3[rt] * ((c * c % MOD) * c % MOD)) % MOD;
} else if(ch == ) {
add[rt] += c;
LL tmp = (((c * c) % MOD * c) % MOD * (r - l + )) % MOD; //(r - l + 1) * c^3
sum3[rt] = (sum3[rt] + tmp + * c * ((sum2[rt] + sum1[rt] * c) % MOD)) % MOD;
sum2[rt] = (sum2[rt] + (c * c % MOD * (r - l + ) % MOD) + * sum1[rt] * c) % MOD;
sum1[rt] = (sum1[rt] + (r - l + ) * c) % MOD;
}
return;
}
PushDown(rt , r - l + );
int m = (l + r) >> ;
if(L > m)
update(L , R , c , ch , rson);
else if(R <= m)
update(L , R , c , ch , lson);
else {
update(L , R , c , ch , lson);
update(L , R , c , ch , rson);
}
PushUp(rt);
}
LL query(int L , int R , int p , int l , int r , int rt)
{
if(L <= l && R >= r) {
if(p == )
return sum1[rt] % MOD;
else if(p == )
return sum2[rt] % MOD;
else
return sum3[rt] % MOD;
}
PushDown(rt , r - l + );
int m = (l + r) >> ;
if(L > m)
return query(L , R , p , rson);
else if(R <= m)
return query(L , R , p , lson);
else
return (query(L , R , p , lson) + query(L , R , p , rson)) % MOD;
}
int main()
{
int n , m;
int a , b , c , ch;
while(~scanf("%d %d" , &n , &m))
{
if(n == && m == )
break;
build( , n , );
while(m--) {
scanf("%d %d %d %d" , &ch , &a , &b , &c);
if(ch != ) {
update(a , b , c , ch , , n , );
} else {
printf("%I64d\n" , query(a , b , c , , n , ));
}
}
}
return ;
}

HDU4578 线段树(区间更新 + 多种操作)的更多相关文章

  1. HDU4578 线段树(区间更新 + 多种操作)和平方,立方

    参考:https://www.cnblogs.com/H-Vking/p/4297973.html 题意: 虽然是比较裸的线段树,但是比较麻烦,并且有很多细节需要考虑,对着别人的ac代码debug了一 ...

  2. hdu4578线段树区间更新

    /* 只有在区间中的数字不相同时才pushdown:往子区间传递数字再到子区间更新,同时该区间的flag置0 更新完左右子区间后进行pushup,如果左右子区间数字相同,那么把子区间合并,子区间数字置 ...

  3. hihoCoder 1080 : 更为复杂的买卖房屋姿势 线段树区间更新

    #1080 : 更为复杂的买卖房屋姿势 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho都是游戏迷,“模拟都市”是他们非常喜欢的一个游戏,在这个游戏里面他们 ...

  4. HDU 5023 A Corrupt Mayor's Performance Art(线段树区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5023 解题报告:一面墙长度为n,有N个单元,每个单元编号从1到n,墙的初始的颜色是2,一共有30种颜色 ...

  5. HDU 4902 Nice boat 2014杭电多校训练赛第四场F题(线段树区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4902 解题报告:输入一个序列,然后有q次操作,操作有两种,第一种是把区间 (l,r) 变成x,第二种是 ...

  6. HDU5039--Hilarity DFS序+线段树区间更新 14年北京网络赛

    题意:n个点的树,每个条边权值为0或者1, q次操作 Q 路径边权抑或和为1的点对数, (u, v)(v, u)算2个. M i修改第i条边的权值 如果是0则变成1, 否则变成0 作法: 我们可以求出 ...

  7. hihoCoder #1078 : 线段树的区间修改(线段树区间更新板子题)

    #1078 : 线段树的区间修改 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 对于小Ho表现出的对线段树的理解,小Hi表示挺满意的,但是满意就够了么?于是小Hi将问题 ...

  8. hdu 3966(树链剖分+线段树区间更新)

    传送门:Problem 3966 https://www.cnblogs.com/violet-acmer/p/9711441.html 学习资料: [1]线段树区间更新:https://blog.c ...

  9. POJ 3468:A Simple Problem with Integers(线段树区间更新模板)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 141093 ...

随机推荐

  1. 端口扫描工具nmap

    nmap 使用介绍 nmap是目前为止最广为使用的国外端口扫描工具之一.我们可以从[url]http://www.insecure.org/[/url]进行下载,可以很容易的安装到Windows和un ...

  2. SQL注入原理讲解

    1.1.1 摘要 日前,国内最大的程序员社区CSDN网站的用户数据库被黑客公开发布,600万用户的登录名及密码被公开泄露,随后又有多家网站的用户密码被流传于网络,连日来引发众多网民对自己账号.密码等互 ...

  3. Logback学习笔记

    Logback介绍 Logback 分为三个模块:Core.Classic 和 Access.Core模块是其他两个模块的基础. Classic模块扩展了core模块. Classic模块相当于log ...

  4. Best MVC Practices 最佳的MVC实践

    Although Model-View-Controller (MVC) is known by nearly every Web developer, how to properly use MVC ...

  5. iptables-linux(ls)-inode-block

    Part1:iptables 环境:centos6.7 目前我只配置了INPUT.OUTPUT和FORWORD都是ACCEPT的规则 由于想要先实现防火墙规则,所以前面的内容讲的是方法,后面是详解ip ...

  6. TCP/IP Socket发送接收图片demo

    一个实例通过client端和server端通讯 客户端通过TCP/IP传输资源文件,比如图片,文字,音频,视频等..... 服务端接受到文件存入本地磁盘,返回接受到:“收到来自于"+s.ge ...

  7. Java8实战Lambda和Stram API学习

    public  class Trader{        private String name;    private String city; public Trader(String n, St ...

  8. [LeetCode] Three Sum题解

    Three Sum: Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? ...

  9. Java数据库操作(JDBC)

    JDBC Java数据库连接(Java DataBase Connectivity,JDBC)用于在Java程序中实现数据库操作功能,它提供了执行SQL语句.访问各种数据库的方法,并为各种不同的数据库 ...

  10. Java 基础:数组

    一.数组声明: int[] x; int x[]; 在Java中一般使用前者,机把int[]看做一个类型,C++中只能后者 二.数组初始化: 直接提供值: int[] x = {1, 3, 4}; i ...