基于Kafka+Spark Streaming+HBase实时点击流案例
背景
Kafka实时记录从数据采集工具Flume或业务系统实时接口收集数据,并作为消息缓冲组件为上游实时计算框架提供可靠数据支撑,Spark 1.3版本后支持两种整合Kafka机制(Receiver-based Approach 和 Direct Approach),具体细节请参考文章最后官方文档链接,数据存储使用HBase
实现思路
- 实现Kafka消息生产者模拟器
- Spark Streaming采用Direct Approach方式实时获取Kafka中数据
- Spark Streaming对数据进行业务计算后存储到HBase
组件版本
Spark 2.1.0 Kafka0.9.0.1 HBase1.2.0
代码实现
Kafka消息模拟器
object KafkaMessageGenerator {
private val random = new Random()
private var pointer = -
private val os_type = Array(
"Android", "IPhone OS",
"None", "Windows Phone"
)
def click(): Double = {
random.nextInt()
}
def getOsType(): String = {
pointer = pointer +
if (pointer >= os_type.length) {
pointer =
os_type(pointer)
} else {
os_type(pointer)
}
}
def main(args: Array[String]): Unit = {
val topic = "user_events"
val props = new Properties()
props.put("bootstrap.servers", "10.3.71.154:9092")
props.put("key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer")
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
val producer = new KafkaProducer[String, String](props)
while (true) {
val event: JSONObject = new JSONObject()
event.put("uid", UUID.randomUUID()) //随机生成用户id
event.put("event_time", System.currentTimeMillis.toString) //记录事件发生时间
event.put("os_type", getOsType) //设备类型
event.put("click_count", click) //点击次数
val record = new ProducerRecord[String, String](topic, event.toString)
producer.send(record)
println("Message sent: " + event)
Thread.sleep()
}
}
}
Spark Streaming主类
object PageViewStream {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("PageViewStream").setMaster("local[*]")
//创建StreamingContext 批处理间隔5s
val ssc = new StreamingContext(conf, Seconds())
// kafka配置
val kafkaParams = Map[String, String](
"metadata.broker.list" -> "10.3.71.154:9092",
"serializer.class" -> "kafka.serializer.StringEncoder"
)
//创建一个direct stream
val kafkaStream: InputDStream[(String, String)] = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, Set("user_events"))
val events: DStream[JSONObject] = kafkaStream.flatMap(line => {
val data: JSONObject = JSON.parseObject(line._2)
Some(data)
})
// 计算用户点击次数
val userClicks: DStream[(String, Integer)] = events.map(x => (x.getString("uid"), x.getInteger("click_count"))).reduceByKey(_ + _)
userClicks.foreachRDD(rdd => {
rdd.foreachPartition(partitionOfRecords => {
//Hbase配置
val tableName = "PageViewStream2"
val hbaseConf = HBaseConfiguration.create()
hbaseConf.set("hbase.zookeeper.quorum", "master66")
hbaseConf.set("hbase.zookeeper.property.clientPort", "")
val conn = ConnectionFactory.createConnection(hbaseConf)
val StatTable = conn.getTable(TableName.valueOf(tableName))
partitionOfRecords.foreach(pair => {
//用户ID
val uid = pair._1
//点击次数
val click = pair._2
//组装数据 创建put对象 rowkey
val put = new Put(Bytes.toBytes(uid))
put.addColumn("Stat2".getBytes, "ClickStat".getBytes, Bytes.toBytes("TESTS============"))
StatTable.put(put)
})
})
})
ssc.start()
ssc.awaitTermination()
}
}
基于Kafka+Spark Streaming+HBase实时点击流案例的更多相关文章
- 日志=>flume=>kafka=>spark streaming=>hbase
日志=>flume=>kafka=>spark streaming=>hbase 日志部分 #coding=UTF-8 import random import time ur ...
- demo2 Kafka+Spark Streaming+Redis实时计算整合实践 foreachRDD输出到redis
基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像Spark Streaming.Spark SQL.MLlib.GraphX,这些内建库都提供了 ...
- 苏宁基于Spark Streaming的实时日志分析系统实践 Spark Streaming 在数据平台日志解析功能的应用
https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 20 ...
- 使用 Kafka 和 Spark Streaming 构建实时数据处理系统
使用 Kafka 和 Spark Streaming 构建实时数据处理系统 来源:https://www.ibm.com/developerworks,这篇文章转载自微信里文章,正好解决了我项目中的技 ...
- 使用 Kafka 和 Spark Streaming 构建实时数据处理系统(转)
原文链接:http://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice2/index.html?ca=drs-&ut ...
- Apache Kafka + Spark Streaming Integration
1.目标 为了构建实时应用程序,Apache Kafka - Spark Streaming Integration是最佳组合.因此,在本文中,我们将详细了解Kafka中Spark Streamin ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十一)NIFI1.7.1安装
一.nifi基本配置 1. 修改各节点主机名,修改/etc/hosts文件内容. 192.168.0.120 master 192.168.0.121 slave1 192.168.0.122 sla ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十三)kafka+spark streaming打包好的程序提交时提示虚拟内存不足(Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 G)
异常问题:Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical mem ...
随机推荐
- ssh在本地调用远程主机上的命令,不登录远程主机shell
需求描述: 在实际shell脚本的编写过程中,需要通过ssh远程执行一个命令,并返回执行的结果 简单来说,就是将命令发送到远程的主机上进行执行,但是并没有实际的登录到远程主机上.即通过 ssh的方式本 ...
- ios 调用系统应用的方法 应用间跳转的方法
声明一个私有方法: #pragma mark - 私有方法 -(void)openUrl:(NSString *)urlStr{ //注意url中包含协议名称,iOS根据协议确定调用哪个应用,例如发送 ...
- Android中Invalidate与postInvalidate的区别<转>
http://www.cnblogs.com/it-tomorrow/archive/2012/11/08/2760146.html 示例:http://rayleung.iteye.com/blog ...
- Access数据操作-01
1.未在本地计算机上注册“Microsoft.Jet.OLEDB.4.0”提供程序 在菜单 “项目”的最下面 工程属性 菜单,选择“生成”选项卡,将目标平台由“Amy CPU”或者“*64”改成“* ...
- Windows版Nginx启动失败之1113: No mapping for the Unicode character exists in the target multi-byte code page
Windows版Nginx启动一闪,进程中未发现nginx进程,查看nginx日志,提示错误为1113: No mapping for the Unicode character exists in ...
- Android SDK更新下载失败以及Studio首次安装取消自动下载SDK
这是因为,此时Android Studio会去获取 android sdk 组件信息,这个过程相当慢,还经常加载失败,导致Android Studio启动不起开. 解决办法: 不去获取android ...
- 如何在CLI命令行下运行PHP脚本,同时向PHP脚本传递参数?
<?php/* //命令行输入输出流fwrite(STDOUT,"Enter your name:"); $name = trim(fgets(STDOUT)); fwrit ...
- css纯字母或者字母换行显示
white-space:normal; word-break:break-all;
- PyQt4日历部件QXalendarWidget
QCalendarWidget类提供了以月为单位地日历部件.该部件允许用户以一种简单而直接的方式选择日期. #!/usr/bin/python # -*- coding: utf-8 -*- impo ...
- 什么是SQL注入式攻击和如何防范?
什么是SQL注入式攻击? 所谓SQL注入式攻击,就是攻击者把SQL命令插入到Web表单的输入域或页面请求的查询字符串,欺骗服务器执行恶意的SQL命令.在某些表单中,用户输入的内容直接用来构造(或者影响 ...