Python开发【模块】:CSV文件 数据可视化
CSV模块
1、CSV文件格式
要在文本文件中存储数据,最简单的方式是讲数据作为一系列逗号分隔的值(CSV)写入文件,这样的文件成为CSV文件,如下:
AKDT,Max TemperatureF,Mean TemperatureF,Min TemperatureF,Max Dew PointF,MeanDew PointF,Min DewpointF,Max Humidity, Mean Humidity, Min Humidity, Max Sea Level PressureIn, Mean Sea Level PressureIn, Min Sea Level PressureIn, Max VisibilityMiles, Mean VisibilityMiles, Min VisibilityMiles, Max Wind SpeedMPH, Mean Wind SpeedMPH, Max Gust SpeedMPH,PrecipitationIn, CloudCover, Events, WindDirDegrees
2014-7-1,64,56,50,53,51,48,96,83,58,30.19,30.00,29.79,10,10,10,7,4,,0.00,7,,337
2014-7-2,71,62,55,55,52,46,96,80,51,29.81,29.75,29.66,10,9,2,13,5,,0.14,7,Rain,327
2014-7-3,64,58,53,55,53,51,97,85,72,29.88,29.86,29.81,10,10,8,15,4,,0.01,6,,258
2014-7-4,59,56,52,52,51,50,96,88,75,29.91,29.89,29.87,10,9,2,9,2,,0.07,7,Rain,255
2014-7-5,69,59,50,52,50,46,96,72,49,29.88,29.82,29.79,10,10,10,13,5,,0.00,6,,110
2014-7-6,62,58,55,51,50,46,80,71,58,30.13,30.07,29.89,10,10,10,20,10,29,0.00,6,Rain,213
2014-7-7,61,57,55,56,53,51,96,87,75,30.10,30.07,30.05,10,9,4,16,4,25,0.14,8,Rain,211
2014-7-8,55,54,53,54,53,51,100,94,86,30.10,30.06,30.04,10,6,2,12,5,23,0.84,8,Rain,159
2014-7-9,57,55,53,56,54,52,100,96,83,30.24,30.18,30.11,10,7,2,9,5,,0.13,8,Rain,201
2014-7-10,61,56,53,53,52,51,100,90,75,30.23,30.17,30.03,10,8,2,8,3,,0.03,8,Rain,215
2014-7-11,57,56,54,56,54,51,100,94,84,30.02,30.00,29.98,10,5,2,12,5,,1.28,8,Rain,250
2014-7-12,59,56,55,58,56,55,100,97,93,30.18,30.06,29.99,10,6,2,15,7,26,0.32,8,Rain,275
2014-7-13,57,56,55,58,56,55,100,98,94,30.25,30.22,30.18,10,5,1,8,4,,0.29,8,Rain,291
2014-7-14,61,58,55,58,56,51,100,94,83,30.24,30.23,30.22,10,7,0,16,4,,0.01,8,Fog,307
2014-7-15,64,58,55,53,51,48,93,78,64,30.27,30.25,30.24,10,10,10,17,12,,0.00,6,,318
2014-7-16,61,56,52,51,49,47,89,76,64,30.27,30.23,30.16,10,10,10,15,6,,0.00,6,,294
2014-7-17,59,55,51,52,50,48,93,84,75,30.16,30.04,29.82,10,10,6,9,3,,0.11,7,Rain,232
2014-7-18,63,56,51,54,52,50,100,84,67,29.79,29.69,29.65,10,10,7,10,5,,0.05,6,Rain,299
2014-7-19,60,57,54,55,53,51,97,88,75,29.91,29.82,29.68,10,9,2,9,2,,0.00,8,,292
2014-7-20,57,55,52,54,52,50,94,89,77,29.92,29.87,29.78,10,8,2,13,4,,0.31,8,Rain,155
2014-7-21,69,60,52,53,51,50,97,77,52,29.99,29.88,29.78,10,10,10,13,4,,0.00,5,,297
2014-7-22,63,59,55,56,54,52,90,84,77,30.11,30.04,29.99,10,10,10,9,3,,0.00,6,Rain,240
2014-7-23,62,58,55,54,52,50,87,80,72,30.10,30.03,29.96,10,10,10,8,3,,0.00,7,,230
2014-7-24,59,57,54,54,52,51,94,84,78,29.95,29.91,29.89,10,9,3,17,4,28,0.06,8,Rain,207
2014-7-25,57,55,53,55,53,51,100,92,81,29.91,29.87,29.83,10,8,2,13,3,,0.53,8,Rain,141
2014-7-26,57,55,53,57,55,54,100,96,93,29.96,29.91,29.87,10,8,1,15,5,24,0.57,8,Rain,216
2014-7-27,61,58,55,55,54,53,100,92,78,30.10,30.05,29.97,10,9,2,13,5,,0.30,8,Rain,213
2014-7-28,59,56,53,57,54,51,97,94,90,30.06,30.00,29.96,10,8,2,9,3,,0.61,8,Rain,261
2014-7-29,61,56,51,54,52,49,96,89,75,30.13,30.02,29.95,10,9,3,14,4,,0.25,6,Rain,153
2014-7-30,61,57,54,55,53,52,97,88,78,30.31,30.23,30.14,10,10,8,8,4,,0.08,7,Rain,160
2014-7-31,66,58,50,55,52,49,100,86,65,30.31,30.29,30.26,10,9,3,10,4,,0.00,3,,217
sitka_weather_07-2014.csv
2、取CSV数据绘制气温图表
① 创建highs_lows.py读取数据第一行:
import csv filename = 'sitka_weather_07-2014.csv'
with open(filename,'r') as f:
reader = csv.reader(f) # 生成阅读器,f对象传入
header_row = next(reader) # 查看文件第一行,reader是可迭代对象
print(header_row) # 列表格式 # ['AKDT', 'Max TemperatureF', 'Mean TemperatureF', 'Min TemperatureF',
# 'Max Dew PointF', 'MeanDew PointF', 'Min DewpointF', 'Max Humidity',
# ' Mean Humidity', ' Min Humidity', ' Max Sea Level PressureIn',
# ' Mean Sea Level PressureIn', ' Min Sea Level PressureIn',
# ' Max VisibilityMiles', ' Mean VisibilityMiles', ' Min VisibilityMiles',
# ' Max Wind SpeedMPH', ' Mean Wind SpeedMPH', ' Max Gust SpeedMPH',
# 'PrecipitationIn', ' CloudCover', ' Events', ' WindDirDegrees']
② 修改highs_lows.py文件获取每日最高温度
import csv filename = 'sitka_weather_07-2014.csv'
with open(filename,'r') as f:
reader = csv.reader(f) # 生成阅读器,f对象传入
header_row = next(reader) # 查看文件第一行,reader是可迭代对象 highs = []
for row in reader:
high = int(row[1])
highs.append(high)
print(highs) # [64, 71, 64, 59, 69, 62, 61, 55, 57, 61, 57, 59, 57, 61,
# 64, 61, 59, 63, 60, 57, 69, 63, 62, 59, 57, 57, 61, 59, 61,61, 66]
③ 根据数据绘制气温图表
import csv
import matplotlib.pyplot as plt filename = 'sitka_weather_07-2014.csv'
with open(filename,'r') as f:
reader = csv.reader(f) # 生成阅读器,f对象传入
header_row = next(reader) # 查看文件第一行,reader是可迭代对象 highs = []
for row in reader:
high = int(row[1])
highs.append(high) # 设置图片大小
fig = plt.figure(dpi=128,figsize=(10,6))
plt.plot(highs, c='red',linewidth=1) # 设置颜色、线条粗细 # 设置图片格式
plt.title('Daily high temperatures,July 2014', fontsize=24) # 标题
plt.xlabel('', fontsize=14)
plt.ylabel('Temperature(F)', fontsize=14) plt.show() # 输出图像
绘图:

④ X轴改为时间日期
import csv
import matplotlib.pyplot as plt
from datetime import datetime filename = 'sitka_weather_07-2014.csv'
with open(filename,'r') as f:
reader = csv.reader(f) # 生成阅读器,f对象传入
header_row = next(reader) # 查看文件第一行,reader是可迭代对象 dates,highs = [],[]
for row in reader:
current_date = datetime.strptime(row[0],'%Y-%m-%d')
dates.append(current_date)
high = int(row[1])
highs.append(high) # 设置图片大小
fig = plt.figure(dpi=128,figsize=(10,6))
plt.plot(dates,highs, c='red',linewidth=1) # linewidth决定绘制线条的粗细 # 设置图片格式
plt.title('Daily high temperatures,July 2014', fontsize=20) # 标题
plt.xlabel('', fontsize=14)
fig.autofmt_xdate() # 日期标签转为斜体
plt.ylabel('Temperature(F)', fontsize=14)
plt.tick_params(axis='both',which='major')
plt.show() # 输出图像
绘图:

⑤ 添加低温数据,填充折线区域
import csv
import matplotlib.pyplot as plt
from datetime import datetime filename = 'sitka_weather_2014.csv'
with open(filename,'r') as f:
reader = csv.reader(f) # 生成阅读器,f对象传入
header_row = next(reader) # 查看文件第一行,reader是可迭代对象 # 获取日期,最高温度,最低温度
dates,highs,lows = [],[],[]
for row in reader:
try:
current_date = datetime.strptime(row[0],'%Y-%m-%d')
high = int(row[1])
low = int(row[3])
except ValueError:
print(current_date,'missing data')
else:
dates.append(current_date)
highs.append(high)
lows.append(low) # 设置图片大小
fig = plt.figure(dpi=128,figsize=(10,6))
plt.plot(dates,highs, c='red',alpha=0.5) # 最高温度 alpha透明度0完全透明,1表示完全不透明
plt.plot(dates,lows, c='blue',alpha=0.5) # 最低温度
plt.fill_between(dates,highs,lows,facecolor='blue',alpha=0.1) #填充色 # 设置图片格式
plt.title('Daily high temperatures - 2014', fontsize=20) # 标题
plt.xlabel('', fontsize=14)
fig.autofmt_xdate() # 日期标签转为斜体
plt.ylabel('Temperature(F)', fontsize=14)
plt.tick_params(axis='both',which='major')
plt.show() # 输出图像
绘图:

Python开发【模块】:CSV文件 数据可视化的更多相关文章
- [Python]-pandas模块-CSV文件读写
Pandas 即Python Data Analysis Library,是为了解决数据分析而创建的第三方工具,它不仅提供了丰富的数据模型,而且支持多种文件格式处理,包括CSV.HDF5.HTML 等 ...
- python之模块csv之CSV文件一次写入多行
# -*- coding: utf-8 -*- #python 27 #xiaodeng #CSV文件一次写入多行 import csv #csv文件,是一种常用的文本格式,用以存储表格数据,很多程序 ...
- python之模块csv之CSV文件的写入(基本结构)
# -*- coding: utf-8 -*- #python 27 #xiaodeng #CSV文件的写入(基本结构) import csv #csv文件,是一种常用的文本格式,用以存储表格数据,很 ...
- python之模块csv之CSV文件的写入(按行写入)
# -*- coding: utf-8 -*- #python 27 #xiaodeng #CSV文件的写入(按行写入) import csv #csv文件,是一种常用的文本格式,用以存储表格数据,很 ...
- Python调用matplotlib实现交互式数据可视化图表案例
交互式的数据可视化图表是 New IT 新技术的一个应用方向,在过去,用户要在网页上查看数据,基本的实现方式就是在页面上显示一个表格出来,的而且确,用表格的方式来展示数据,显示的数据量会比较大,但是, ...
- python实现的电影票房数据可视化
代码地址如下:http://www.demodashi.com/demo/14275.html 详细说明: Tushare是一个免费.开源的python财经数据接口包.主要实现对股票等金融数据从数据采 ...
- CSV文件数据如何读取、导入、导出到新的CSV文件中以及CSV文件的创建
CSV文件数据如何读取.导入.导出到新的CSV文件中以及CSV文件的创建 一.csv文件的创建 (1)新建一个文本文档: 打开新建文本文档,进行编辑. 注意:关键字与关键字之间用英文半角逗号隔开.第一 ...
- python中操作csv文件
python中操作csv文件 读取csv improt csv f = csv.reader(open("文件路径","r")) for i in f: pri ...
- java读取目录下所有csv文件数据,存入三维数组并返回
package dwzx.com.get; import java.io.BufferedReader; import java.io.File; import java.io.FileReader; ...
随机推荐
- erlang 自定义函数的初步应用
一.模块内调用 1> AA=fun(BB)-> io:format("this is test args ~s~n",[BB]) end.#Fun<erl_eva ...
- R语言hist绘图函数
hist 用于绘制直方图,下面介绍每个参数的作用: 1)x: 用于绘制直方图的数据,该参数的值为一个向量 代码示例: data <- c(rep(1, 10), rep(2, 5), rep(3 ...
- Java基础-JDBC访问数据库
基本步骤: 加载数据库驱动 建立连接 创建SQL语句 执行SQL语句 处理执行结果 释放资源 代码示例: import java.sql.Connection; import java.sql.Dri ...
- java web 复选框checked
熟悉web前端开发的人都知道,判断复选框是否选中是经常做的事情,判断的方法很多,但是开发过程中常常忽略了这些方法的兼容性,而是实现效果就好了.博主之前用户不少方法,经常Google到一些这个不好那个不 ...
- 使用 JMeter 完成常用的压力测试 [转]
讲到测试,人们脑海中首先浮现的就是针对软件正确性的测试,即常说的功能测试.但是软件仅仅只是功能正确是不够的.在实际开发中,还有其它的非功能因素也起着决定性的因素,例如软件的响应速度.影响软件响应速度的 ...
- 怎样用MathType创建竖式算法
在使用MathType编辑公式时,有时将最简单的表达式变成Word文档也会出现一些问题.比如MathType竖式.下面介绍MathType竖式的一些编辑方法. 步骤如下: 步骤一:在MathType底 ...
- mysql数据库中,通过一条insert into语句,同时插入多个值
需求描述: 今天在看一本mysql的书籍,发现一个mysql中insert into好用的技巧,就是通过 1条insert into语句,插入多行数据,而不是多个insert into语句.在此记录下 ...
- android 应用能够安装在什么地方
眼下我们仅仅能做到将应用安装在例如以下组合中: 1.关闭MTK_2SDCARD_SWAP,能够将应用安装在以下两个路径上 1)手机内存(internal storage) 2) ...
- Extjs学习笔记--(五,事件)
Extjs中事件包括浏览器事件(单机按钮,鼠标移动等触发)和内部事件(组件之间的联动) 绑定浏览器事件的过程Ext.EventManager 要为元素绑定事件,通常会使用EventManager.on ...
- 安装autoit libary失败问题解决
运行环境:win7-32,python2.7安装遇到的问题: