Code Forces 149DColoring Brackets(区间DP)
2 seconds
256 megabytes
standard input
standard output
Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.
You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(")
and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets.
For example, such sequences as "(())()" and "()" are correct
bracket sequences and such sequences as ")()" and "(()" are
not.
In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the
matching sixth one and the fifth bracket corresponds to the fourth one.
You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:
- Each bracket is either not colored any color, or is colored red, or is colored blue.
- For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
- No two neighboring colored brackets have the same color.
Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).
The first line contains the single string s (2 ≤ |s| ≤ 700)
which represents a correct bracket sequence.
Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).
(())
12
(()())
40
()
4
关于区间DP,可以参照这个博客
http://blog.csdn.net/dacc123/article/details/50885903
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <stack> using namespace std;
const long long int mod=1e9+7;
char a[705];
long long int dp[705][705][3][3];
int s[705];
int m[705];
int top;
void dfs(int i,int j)
{
if(j-i==1)
{
dp[i][j][0][1]=1;
dp[i][j][0][2]=1;
dp[i][j][1][0]=1;
dp[i][j][2][0]=1;
return;
}
else if(m[i]==j)
{
dfs(i+1,j-1);
for(int p=0;p<3;p++)
{
for(int q=0;q<3;q++)
{
if(q!=1) dp[i][j][0][1]=(dp[i][j][0][1]+dp[i+1][j-1][p][q])%mod;
if(q!=2) dp[i][j][0][2]=(dp[i][j][0][2]+dp[i+1][j-1][p][q])%mod;
if(p!=1) dp[i][j][1][0]=(dp[i][j][1][0]+dp[i+1][j-1][p][q])%mod;
if(p!=2) dp[i][j][2][0]=(dp[i][j][2][0]+dp[i+1][j-1][p][q])%mod;
}
}
return;
}
else
{
int k=m[i];
dfs(i,k);
dfs(k+1,j);
for(int p=0;p<3;p++)
for(int q=0;q<3;q++)
for(int x=0;x<3;x++)
for(int y=0;y<3;y++)
if(!((y==1&&x==1)||(y==2&&x==2)))
dp[i][j][p][q]=(dp[i][j][p][q]+(dp[i][k][p][x]*dp[k+1][j][y][q])%mod)%mod;
return;
} }
int main()
{
while(scanf("%s",a)!=EOF)
{
int len=strlen(a);
top=-1;
for(int i=0;i<len;i++)
{
if(a[i]=='(') s[++top]=i;
else
{
m[s[top]]=i;
//m[i]=s[top];
top--;
}
}
memset(dp,0,sizeof(dp));
dfs(0,len-1);
long long int ans=0;
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
ans=(ans+dp[0][len-1][i][j])%mod;
printf("%lld\n",ans);
}
return 0;
}
Code Forces 149DColoring Brackets(区间DP)的更多相关文章
- Codeforces 508E Arthur and Brackets 区间dp
Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...
- POJ 2995 Brackets 区间DP
POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...
- CF149D. Coloring Brackets[区间DP !]
题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...
- Brackets(区间dp)
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3624 Accepted: 1879 Descript ...
- POJ2955:Brackets(区间DP)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- HOJ 1936&POJ 2955 Brackets(区间DP)
Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...
- POJ2955 Brackets —— 区间DP
题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS Memory Limit: 65536K Total Su ...
- poj 2955 Brackets (区间dp基础题)
We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
随机推荐
- e556. 在程序中播放音频
try { URL url = new URL("http://hostname/audio.au"); AudioClip ac = Applet.newAudioClip(ur ...
- 关于quartus ii软件中注释乱码问题的解决方法
乱码现象: 解决办法: 打开文件所在工程找到该verilog文件(后缀名是.v),使用记事本打开,这时你会看到注释好好的没乱码,很高兴是不,不用着急.接下来点击文件再另存为,选择编码:UTF-8,点保 ...
- php数组函数常见的那些
一.数组操作的基本函数 array_values($arr); //获得数组的值 array_keys($arr); //获得数组的键名 array_flip($arr); //数组中的值与键名互换( ...
- 讨论CSS中的各类居中方式
今天主要谈一谈CSS中的各种居中的办法. 首先是水平居中,最简单的办法当然就是 margin:0 auto; 也就是将margin-left和margin-right属性设置为auto,从而达到水平居 ...
- CSS样式中” 大于号”
CSS样式中” 大于号” 在一段CSS代码中见到一个大于号(>),代码如下: BODY#css-zen-garden > DIV#extraDiv2 { BACKGROUND-IMAGE: ...
- Extjs学习笔记--(二)
1.配置实用Extjs <link href="Extjs/resources/css/ext-all.css" rel="stylesheet" /&g ...
- 【RF库Collections库测试】关键字append to list
Arguments:[ list_ | *values ]Adds `values` to the end of `list`.
- Vitamio与FFmpeg、LGPL、GPL的关系
转自:http://sun.sanniang.me/2014/04/26/the-relationship-vitamio-with-ffmepg-lgp-gpl Vitamio 使用了 FFmpeg ...
- stm32入门(从51过渡到32)
单片机对于我来说,就是一个超级大机器,上面有一排一排数不尽的开关,我需要做的,就是根据我的设计,拿着一张超级大的表(Datasheet),把需要的开关(reg)都开关(config)到对应功能的位置( ...
- ajax返回值传给js全局变量
1. $.ajaxSetup({ async : false //设置ajax为同步方式,异步方式的话在赋值时数据还未提取出来 });var t = ""; var enginee ...