luogu

description

一个\(1...n\)的排列,其前缀最大值有\(A\)个,后缀最大值有\(B\)个,求满足要求的排列数。

一个位置\(i\)满足前缀最大当且仅当不存在\(j<i\)使得\(a_j>a_i\)。后缀最大亦然。

\(T\le2\times10^5,n\le5\times10^4,A,B\le100\)

sol

考虑\(n\)这个数。它一定既是前缀最大又是后缀最大,所以它的前面还有\(A-1\)个前缀最大,\(B-1\)个后缀最大。

考虑每个前缀/后缀最大值,它一定挡住了若干个数(可能是零个)使得它们不能成为前缀最大。不妨将其视作一个整体,其中最大的那个数是前缀/后缀最大值,且位置在最左/右边,其余的数可以随意排列。

这等价于把除了\(n\)以外的\(n-1\)个数分成\(A+B-2\)个环排列。而这就是第一类斯特林数的定义。

所以答案就是\(s(n-1,A+B-2)\times\binom{A+B-2}{A-1}\)。

\(O(n(A+B))\)预处理,然后\(O(1)\)回答。

code

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 50005;
const int M = 205;
const int mod = 1e9+7;
int S[N][M],C[M][M];
int main(){
S[0][0]=1;
for (int i=1;i<N;++i)
for (int j=1;j<=i&&j<M;++j)
S[i][j]=(1ll*S[i-1][j]*(i-1)+S[i-1][j-1])%mod;
C[0][0]=1;
for (int i=1;i<M;++i){
C[i][0]=1;
for (int j=1;j<=i;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
}
int Case=gi();while (Case--){
int n=gi(),a=gi(),b=gi();
printf("%lld\n",1ll*S[n-1][a+b-2]*C[a+b-2][a-1]%mod);
}
return 0;
}

[Luogu4609][FJOI2016]建筑师的更多相关文章

  1. Luogu4609 FJOI2016 建筑师 第一类斯特林数

    题目传送门 题意:给出$N$个高度从$1$到$N$的建筑,问有多少种从左往右摆放这些建筑的方法,使得从左往右看能看到$A$个建筑,从右往左看能看到$B$个建筑.$N \leq 5 \times 10^ ...

  2. Luogu4609 FJOI2016建筑师(斯特林数)

    显然排列中的最大值会将排列分成所能看到的建筑不相关的两部分.对于某一边,将所能看到的建筑和其遮挡的建筑看成一个集合.显然这个集合内最高的要排在第一个,而剩下的建筑可以随便排列,这相当于一个圆排列.同时 ...

  3. 【Luogu4609】建筑师(第一类斯特林数,组合数学)

    [Luogu4609]建筑师(组合数学) 题面 洛谷 题解 首先发现整个数组一定被最高值切成左右两半,因此除去最高值之后在左右分开考虑. 考虑一个暴力\(dp\) ,设\(f[i][j]\)表示用了\ ...

  4. 【LG4609】[FJOI2016]建筑师

    [LG4609][FJOI2016]建筑师 题面 洛谷 题解 (图片来源于网络) 我们将每个柱子和他右边的省略号看作一个集合 则图中共有\(a+b-2\)个集合 而原来的元素中有\(n-1\)个(除去 ...

  5. [洛谷P4609] [FJOI2016]建筑师

    洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...

  6. Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues

    考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...

  7. [FJOI2016]建筑师

    题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 n 个建筑,每个建筑的高度是 1 到 n 之间的一个整数. 小 Z 有很严重的强迫症,他不喜欢有两个建筑的高度相同. ...

  8. P4609 [FJOI2016]建筑师

    思路 裸的第一类斯特林数,思路和CF960G相同 预处理组合数和第一类斯特林数回答即可 代码 #include <cstdio> #include <cstring> #inc ...

  9. 洛谷 P4609: [FJOI2016] 建筑师

    本省省选题是需要做的. 题目传送门:洛谷P4609. 题意简述: 求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B ...

随机推荐

  1. “4K云字库”基本框架图

    "4K云字库"基本框架图   谷歌的web-font,令"云字库"成为IT热点.   云字库,只是云计算的一个细小分支 ,而云计算的基础,是"大数据& ...

  2. python webdriver api-操作富文本框

    操作富文本框-就是邮件正文部分,可以选字体啥的 第一种方式: 一般都是在iframe里,要切进去,一般是”html/body”,编辑之后,再切出来,然后再send_keys就完事儿 #encoding ...

  3. bzoj1999 / P1099 树网的核

    P1099 树网的核 (bzoj数据加强) 前置知识:树的直径 (并不想贴我的智障写法虽然快1倍但内存占用极大甚至在bzoj上MLE) 正常写法之一:用常规方法找到树的直径,在直径上用尺取法找一遍,再 ...

  4. table中checkbox选择多行

    页面代码 <table id="addressTable" class="ui-jqgrid-htable ui-common-table table table- ...

  5. 20145211《网络对抗》注入Shellcode并执行&&Return-to-libc攻击

    Shellcode注入 基础知识 Shellcode实际是一段代码,但却作为数据发送给受攻击服务器,将代码存储到对方的堆栈中,并将堆栈的返回地址利用缓冲区溢出,覆盖成为指向 shellcode的地址. ...

  6. [Microsoft][ODBC Microsoft Access Driver] 参数不足,期待是 1

    真tm坑. QString execStr = QString("SELECT * FROM [Log] WHERE [username]=\"yyy\" ") ...

  7. Ubuntu 14.04 下安装 TFTP 艰辛之路【转】

    本文转载自:https://blog.csdn.net/donglicaiju76152/article/details/76651210 背景 按说在Linux下安装tftp server 很简单, ...

  8. Matplotlib 练习题

    1. 绘制一个二维随机漫步的图形 直接上代码: %pylab inline nsteps = 1000 draws = np.random.randint(-1,2,size=(2,nsteps)) ...

  9. python 字符串输出

    >>> 'spam eggs' # single quotes 'spam eggs' >>> 'doesn\'t' # use \' to escape the ...

  10. Qt5发布错误01

    1.Qt5+VS2013兼容XP方法 (http://www.qtcn.org/bbs/apps.php?q=diary&a=detail&did=2047&uid=15538 ...