P2789 直线交点数
分成两种情况,一种是平行直线,一种是自由直线,在自由直线中可以存在平行直线,但是不能和第一组的直线平行。自由直线和平行直线的交点是i*(n-i)。

 #include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<set>
#include<cstring>
#define inf INT_MAX
#define For(i,a,b) for(register int i=a;i<=b;i++)
#define p(a) putchar(a)
#define g() getchar()
//by war
//2017.10.26
using namespace std;
int n;
int tot;
bool f[][]; void in(int &x)
{
int y=;
char c=g();x=;
while(c<''||c>'')
{
if(c=='-')
y=-;
c=g();
}
while(c<=''&&c>='')x=x*+c-'',c=g();
x*=y;
}
void o(int x)
{
if(x<)
{
p('-');
x=-x;
}
if(x>)o(x/);
p(x%+'');
}
int main()
{
in(n);
For(i,,n)
f[i][]=true;
For(i,,n)
For(fr,,i-)
For(j,,(i-)*i/)
if(f[fr][j])
f[i][fr*(i-fr)+j]=true;
For(i,,)
if(f[n][i])
tot++;
o(tot);
return ;
}

P2789 直线交点数的更多相关文章

  1. 洛谷P2789 直线交点数 [数论,递归]

    题目传送门 题目描述 平面上有N条直线,且无三线共点,那么这些直线能有多少不同的交点数? 输入格式 一个正整数N 输出格式 一个整数表示方案总数 输入输出样例 输入 #1 4 输出 #1 5 说明/提 ...

  2. HDU-1466 计算直线的交点数 经典dp

    1.HDU-1466   计算直线的交点数 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=1466 3.总结:不会推这个,看了题解.. 状态转移: m条 ...

  3. hdu----(1466)计算直线的交点数(dp)

    计算直线的交点数 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  4. HDOJ 1466 计算直线的交点数

    将n 条直线排成一个序列,直线2和直线1最多只有一个交点,直线3和直线1,2最多有两个交点,......,直线n 和其他n-1条直线最多有n-1个交点.由此得出n条直线互不平行且无三线共点的最多交点数 ...

  5. 计算直线的交点数(hdu1466简单的dp)

    题意:平面上有n条直线,且无三线共点,问这些直线能有多少种不同交点数.比如,如果n=2,则可能的交点数量为0(平行)或者1(不平行). 思路:动态规划,想办法记忆化搜索,当前状态和之前状态结合起来 d ...

  6. 计算直线的交点数(set + 打表)

    计算直线的交点数 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  7. hdu1466 计算直线的交点数

    题意: 平面上有n条直线,且无三线共点,问这些直线能有多少种不同交点数. 比如,如果n=2,则可能的交点数量为0(平行)或者1(不平行). 分析: DP 设状态:f[i][j]表示i条直线能否产生j个 ...

  8. hdu 1466 计算直线的交点数

    http://acm.hdu.edu.cn/showproblem.php?pid=1466 N条直线的交点方案数 = c 条直线交叉的交点数与(N-c)条平行线 + c 条直线本身的交点方案 = ( ...

  9. hdu 1466 计算直线的交点数 递推

    题目描述 平面上有n条直线,且无三线共点,问这些直线能有多少种不同交点数. 比如,如果n=2,则可能的交点数量为0(平行)或者1(不平行). 输入 输入数据包含多个测试实例,每个测试实例占一行,每行包 ...

随机推荐

  1. mysql gtid 第一篇

    GTID1 简介   就是全局事务ID(global transaction identifier )2 构成   uuid+transaction_id 3 格式  7a07cd08-ac1b-11 ...

  2. IOS中的三大事件

    iOS 中,所有显示在界面上的对象都是从 UIResponder 直接或间接继承的,只有继承了它才可以处理事件.而在ios中的事件可以分为三大类: 1.触摸事件 2.加速计事件(摇一摇) 3.远程控制 ...

  3. android fragment解析

    1.fragment加载到Activity (1).添加fragment到Activity的布局文件 (2).动态在activity中添加fragment 例子: // 步骤1:获取FragmentM ...

  4. ubuntu 14.04 安装 OpenCV -2.4.13

    1. 安装 (1) 更新软件源 sudo apt-get update sudo apt-get upgrade (2)删除以前安装的 FFMPEG 和 x264 库: sudo apt-get re ...

  5. C++读写TXT文件中的string或者int型数据以及string流的用法

    对文件的读写操作是我们在做项目时经常用到的,在网上看了很多博客,结合自身的项目经验总结了一下,因此写了这篇博客,有些地方可能直接从别的博客中复制过来,但是都会注明出处. 一.文件的输入输出 fstre ...

  6. 【API】检查进程是否存在 - CreateToolhelp32Snapshot

    1 学习目标 今天静态逆向mydocument病毒时,看到病毒代码为了防止自身被调试会先检测杀毒软件和调试工具的进程是否存在.如果没有杀毒软件则释放真正的病毒文件,提前熟悉一下枚举进程的反汇编代码. ...

  7. High level GPU programming in C++

    https://github.com/prem30488/C2CUDATranslator http://www.training.prace-ri.eu/uploads/tx_pracetmo/GP ...

  8. 写好shell脚本的13个技巧【转】

    有多少次,你运行./script.sh,然后输出一些东西,但却不知道它刚刚都做了些什么.这是一种很糟糕的脚本用户体验.我将在这篇文章中介绍如何写出具有良好开发者体验的 shell 脚本. 产品的最终用 ...

  9. Advanced Installer 14.9 – WPF或winform应用程序打包成exe文件

    Advanced Installer14.9 下载地址:https://pan.baidu.com/s/1uj2QcxWcpGdqsjAinNPIAw 提取码:sa3r  选择Visual Studi ...

  10. 转载:2.2.4 配置项的单位《深入理解Nginx》(陶辉)

    原文:https://book.2cto.com/201304/19629.html 大部分模块遵循一些通用的规定,如指定空间大小时不用每次都定义到字节.指定时间时不用精确到毫秒. 当指定空间大小时, ...