DP-动态规划算法实例:拿糖果问题
拿糖果问题
问题描述
妈妈给小B买了N块糖!但是她不允许小B直接吃掉。
假设当前有M块糖,小B每次可以拿P块糖,其中P是M的一个不大于根号下M的质因数。这时,妈妈就会在小B拿了P块糖以后再从糖堆里拿走P块糖。然后小B就可以接着拿糖。
现在小B希望知道最多可以拿多少糖。
输入格式
一个整数N
输出格式
最多可以拿多少糖
样例输入
15
样例输出
6
数据规模和约定
N <= 100000
解题思路:
这道题关键在于数字P,首先理解数字P,它有三个条件,其一是质数,其二是M的一个因数,其三要小于根号下M。
接下来看问题,问的是 希望知道最多可以拿多少糖,而拿糖呢 是 有N颗糖拿最多的糖 看到这个熟悉的架构了吗,这表明,从N中拿最多的糖建立在从N-1到1中拿最多的糖的解上,而我们知道,动态规划问题的一个要点在于,整体的最优解,一定建立或包含在子最优解上的,也就说从M中挑选P的最优解,一定建立在从M'中挑选P'的最优解上。通俗的讲,假设有N = 15,我现在已经知道了N = 1 ,2 ,3 。。。14的答案,首先当N = 15时,它的质因数为2或者3.也就是说,我如果拿2颗,那么还剩15 - 2 * 2 = 11颗,而我已经知道了11颗糖的时候我能拿的最多糖果的答案,那么N = 15时,我能拿到的糖果就是当糖果还有11颗是我能拿的数量加上我已经拿的2颗。同理,还要考虑质因数为3的情况,两种情况中那个情况最优,则答案就是那个。
所以我们可以得出递推式:
dp[i] = dp[i - 2 * prime] + prime
其中,i代表当前的糖果数量,dp[i]的值为当糖果数量为I时我能拿的最多的糖果。
当然,我们这个递推式还不完整,还漏了一点。就是会有多个质因数可以供选择,我们必须对于每个质因数都计算一次,然后选其中最大的情况,所以,完善后的递推式为
dp[i] = max( dp[i] , dp[i - 2 * prime] + prime )
当所有准备工作完成后,我们可以开始了
c++代码:
#include <iostream>
#include <vector>
#include <cmath> using std::cout;
using std::cin;
using std::vector;
using std::max; int main()
{
vector<int> prime;
//存放小于等于根号下 number 的所有质数
int number; //等待输入的总糖果数量
bool flag; //状态。判断一个数字是不是质数 cin>>number;
vector<int> dp(number + ,); //dp向量。记录当糖果数量为i时能拿的糖果 //求质数,并将所有质数保存到prime中
int sqt1 = sqrt(number);
for(int i = ; i <= sqt1; ++i)
{
int sqt2 = sqrt(i);
flag = true;
for(int j = ; j <= sqt2; ++j)
{
if(i % j == )
flag = false;
}
if(flag == true)
prime.push_back(i); } //处理dp向量
for(int i = ; i != number + ; ++i) //i代表dp的下标,代表糖果的数量
{
int sqt2 = sqrt(i);
int _size = prime.size();
for(int j = ; j != _size; ++j) //遍历整个质数的数组
{
if(prime[j] <= sqt2 && i % prime[j] == ) //如果这个质数小于等于根号下当前糖果的数量 且 是它的因数的话
{
dp[i] = max(dp[i],dp[i - * prime[j]] + prime[j]); //求最优解
}
}
} cout<<dp[number];
return ;
}
c++代码:
#include <iostream>
#include <vector>
#include <cmath>
using std::cout;
using std::cin;
using std::vector;
using std::max;
int main()
{
vector<int> prime;
//存放小于等于根号下 number 的所有质数
int number; //等待输入的总糖果数量
bool flag; //状态。判断一个数字是不是质数
cin>>number;
vector<int> dp(number + 1,0); //dp向量。记录当糖果数量为i时能拿的糖果
//求质数,并将所有质数保存到prime中
int sqt1 = sqrt(number);
for(int i = 2; i <= sqt1; ++i)
{
int sqt2 = sqrt(i);
flag = true;
for(int j = 2; j <= sqt2; ++j)
{
if(i % j == 0)
flag = false;
}
if(flag == true)
prime.push_back(i);
}
//处理dp向量
for(int i = 1; i != number + 1; ++i) //i代表dp的下标,代表糖果的数量
{
int sqt2 = sqrt(i);
int _size = prime.size();
for(int j = 0; j != _size; ++j) //遍历整个质数的数组
{
if(prime[j] <= sqt2 && i % prime[j] == 0) //如果这个质数小于等于根号下当前糖果的数量 且 是它的因数的话
{
dp[i] = max(dp[i],dp[i - 2 * prime[j]] + prime[j]); //求最优解
}
}
}
cout<<dp[number];
return 0;
}
DP-动态规划算法实例:拿糖果问题的更多相关文章
- 动态规划 算法(DP)
多阶段决策过程(multistep decision process)是指这样一类特殊的活动过程,过程可以按时间顺序分解成若干个相互联系的阶段,在每一个阶段都需要做出决策,全部过程的决策是一个决策序列 ...
- 动态规划算法(Dynamic Programming,简称 DP)
动态规划算法(Dynamic Programming,简称 DP) 浅谈动态规划 动态规划算法(Dynamic Programming,简称 DP)似乎是一种很高深莫测的算法,你会在一些面试或算法书籍 ...
- 从最长公共子序列问题理解动态规划算法(DP)
一.动态规划(Dynamic Programming) 动态规划方法通常用于求解最优化问题.我们希望找到一个解使其取得最优值,而不是所有最优解,可能有多个解都达到最优值. 二.什么问题适合DP解法 如 ...
- 五大常用算法之二:动态规划算法(DP)
一.基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移.一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划. 二.基本思想与策略 基本 ...
- 剑指Offer——动态规划算法
剑指Offer--动态规划算法 什么是动态规划? 和分治法一样,动态规划(dynamic programming)是通过组合子问题而解决整个问题的解. 分治法是将问题划分成一些独立的子问题,递归地求解 ...
- 多线程动态规划算法求解TSP(Traveling Salesman Problem) 并附C语言实现例程
TSP问题描述: 旅行商问题,即TSP问题(Travelling Salesman Problem)又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须 ...
- (转)dp动态规划分类详解
dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间 ...
- DP动态规划学习笔记
作为考察范围最广,考察次数最多的算法,当然要开一篇博客来复习啦. 子曰:温故而知新,可以为师矣 我复习DP时有一些自己对DP的理解,也就分享出来吧. ——正片开始—— 动态规划算法,即Dynamic ...
- DP动态规划学习笔记——高级篇上
说了要肝的怎么能咕咕咕呢? 不了解DP或者想从基础开始学习DP的请移步上一篇博客:DP动态规划学习笔记 这一篇博客我们将分为上中下三篇(这样就不用咕咕咕了...),上篇是较难一些树形DP,中篇则是数位 ...
随机推荐
- 关于lunece的搜索的分页和多字段搜索关键词
关于全文检索lunece的分页,我们需要用到的是以下方法 IndexSearch类下的searchAfter方法. IndexSearch isearch=new IndexSearch(a); is ...
- python--selenium简单模拟百度搜索点击器
python--selenium简单模拟百度搜索点击器 发布时间:2018-02-28 来源:网络 上传者:用户 关键字: selenium 模拟 简单 点击 搜索 百度 发表文章摘要:用途:简单模拟 ...
- python 爬虫数据存入csv格式方法
python 爬虫数据存入csv格式方法 命令存储方式:scrapy crawl ju -o ju.csv 第一种方法:with open("F:/book_top250.csv" ...
- 利用python库计算person相关系数
使用numpy库,可以实现person相关系数的计算,例如对于矩阵a. a Out[235]: array([[1, 1, 2, 2, 3], [2, 2, 3, 3, 5], [1, 4, 2, 2 ...
- Oracle流程控制语句
1.选择语句 1.1 IF...THEN...END IF语句 DECLARE MY_AGE INT; IF MY_AGE IS NULL THEN DBMS_OUTPUT.put_line('AGE ...
- Python学习笔记第十九周
目录: 一.路由系统URL 1.Django请求生命周期 2.创建Django project 3.配置 4.编写程序 二.视图 三.模板 四.ORM操作 内容: 一.URL 1.Django请求生命 ...
- mbpoll Test FreeModbus TCP Demo
/********************************************************************************* * mbpoll Test Fre ...
- Jaxb对xml报文头的小修小改
前言: 也是在实际工作中, 借助jaxb来实现xml到java对象的映射转换. 在实际应用中, 也遇到了一些有趣好玩的东西, 权当记录下来. 本文主要讲解jaxb如何生成约定的xml报文头的实现思路, ...
- Unity 3D Shader流水线
Unity开发VR之Vuforia 本文提供全流程,中文翻译. Chinar 坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) Chinar -- ...
- xdoj 1028 (素数线性筛+dp)
#include <bits/stdc++.h> using namespace std; ; int prime[N]; int dp[N]; int main () { memset ...