[luogu P3195] [HNOI2008]玩具装箱TOY
[luogu P3195] [HNOI2008]玩具装箱TOY
题目描述
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
输入输出格式
输入格式:
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
输出格式:
输出最小费用
输入输出样例
输入样例#1:
5 4
3
4
2
1
4
输出样例#1:
1
开启斜率优化DP的学习。(可能因为状态原因,学的比较慢)
不太会讲理论,就对这道题讲一讲吧。
首先,我们可以列出一个n^2的转移方程:
f[i]=min(f[j]+(i-j-1+(s[i]-s[j])-L)^2)(j<i)。
将这个式子变化一下:
f[i]=min(f[j]+((i+s[i]-L-1)-(j+s[j]))^2)
设a[i]=i+s[i]-L-1,b[i]=i+s[i]。(当然也可以用一个数组,这里为了方便分辨)
则f[i]=min(f[j]+(a[i]-b[j])^2)=min(f[j]+a[i]^2-2a[i]b[j]+b[j]^2)。
即f[i]=?f[j]+a[i]^2-2a[i]b[j]+b[j]^2。
假装这是成立的,则设y=f[j]+b[j]^2,k=2a[i],x=b[j],b=f[i]-a[i]^2,
得到y=kx+b。
显然,我们需要让f[i]尽可能的小,就需要使得f[i]=b+a[i]^2尽可能小,也就是使b尽可能的小。
由于b=y-kx,其中k是确定的,y和x对于每一个j<i都是确定的,我们就可以将(x,y)表示在二维平面上。
现在,假如我们固定住x坐标,则y坐标要尽可能的小。
如果固定y坐标,则要尽可能增大x=b[j],根据前面的定义,b[]是单调递增的。但是由于y也是单调递增的,所以问题变得复杂了些。
那怎么办?这就涉及到了问题的本质。
对于一类转移方程:
f[i]=min{a[i]*b[j]+c[i]+d[j]}(a[i]和c[i]是常数,b[j]和d[j]与f[j]相关,j<i)
可以使用斜率优化。
稍微转换一下,考虑两个转移j和k,假如j比k更优,有a[i]*b[j]+c[i]+d[j]<a[i]*b[k]+c[i]+d[k]。
为方便考虑,设bj<bk,则得到-a[i]<(d[k]-d[j])/(b[k]-b[j]),这后面的就可以看成两点间直线的斜率。
那这就提示了我们,我们可以在两点间的斜率上做点功夫。
对于这题,沿用上面的式子,得到2a[i]<k(u,v)时,u比v更优。k(u,v)=(yv-yu)/(xv-xu)
这样,我们相当于要维护一个斜率直升不降的单调队列,每次询问时找出满足k(head,head+1)>2a[i]的head,然后,将更新后的f[i]插入到单调队列的队尾。
这样,我们就能将时间复杂度降到O(N)了。(个人觉得有点凌乱,如果读者觉得有上面地方表达不妥或有误,望指出)
code:
%:pragma GCC optimize()
#include<bits/stdc++.h>
#define sqr(x) ((x)*(x))
#define LL long long
using namespace std;
;
const double inf=1e18;
int n,L,l,r; LL f[N],c[N],a[N],b[N];
struct point {
LL x,y;
point() {}
point(LL _x,LL _y):x(_x),y(_y) {}
}st[N];
inline int read() {
; char ch=getchar();
') ch=getchar();
+ch-',ch=getchar();
return x;
}
double slope(point u,point v) {
return u.x==v.x?(u.y<v.y?inf:-inf):1.0*(v.y-u.y)/(v.x-u.x);
}
LL get(LL k) {
])<1.0*k) l++;
return st[l].y-k*st[l].x;
}
void insert(point cur) {
],st[r])>slope(st[r-],cur)) r--;
st[++r]=cur;
}
int main() {
n=read(),L=read(),c[]=;
; i<=n; i++) c[i]=c[i-]+read();
; i<=n; i++) a[i]=i+c[i]-L-;
; i<=n; i++) b[i]=i+c[i];
memset(f,,sizeof f);
l=,r=,st[++r]=point(,);
,j; i<=n; i++) {
f[i]=*a[i])+sqr(a[i]);
insert(point(b[i],f[i]+b[i]*b[i]));
}
printf("%lld\n",f[n]);
;
}
[luogu P3195] [HNOI2008]玩具装箱TOY的更多相关文章
- P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)
P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- P3195 [HNOI2008]玩具装箱TOY
列出DP方程式:设f[i]表示分组完前i件物品的最小花费,为方便计算,设sum[i]表示是前i件物品的长度和. f[i]=min(f[j]+(sum[i]-sum[j]+i-j-L-1)^2) [0& ...
- [洛谷P3195][HNOI2008]玩具装箱TOY
题目大意:有n个物体,大小为$c_i$.把第i个到第j个放到一起,容器的长度为$x=j-i+\sum\limits_{k-i}^{j} c_k$,若长度为x,费用为$(x-L)^2$.费用最小. 题解 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY 斜率优化
Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 ...
- 洛谷 P3195 [HNOI2008]玩具装箱TOY
题意简述 有n个物体,第i个长度为ci 将n个物体分为若干组,每组必须连续 如果把i到j的物品分到一组,则该组长度为 \( j - i + \sum\limits_{k = i}^{j}ck \) 求 ...
- Luogu P3195 [HNOI2008]玩具装箱
题目 预处理\(C\)的前缀和\(sum\).设前\(i\)个物品的最小答案为\(f\). \(f_i=\max\limits_{j\in[1,i)}(f_j+(sum_i-sum_j-L)^2)\) ...
随机推荐
- 设置pip代理
参考: python-proxy-for-pip 设置pip代理 pip install -i http://pypi.douban.com/simple xxx 2018.4
- 3、My Scripts
.用for循环批量修改文件扩展名(P240) .使用专业改名命令rename来实现 .通过脚本实现sshd.rsyslog.crond.network.sysstat服务在开机时自动启动(P244) ...
- 订单BOM、销售BOM、标准BOM
订单BOM.销售BOM.标准BOM 訂單BOM: 是實際生產時用的BOM, 在標準BOM和銷售BOM基礎上增減物料的BOM銷售BOM: 是為特定客戶設定的BOM, 在主檔數據層次上的BOM, 在生 ...
- layui upload 后台获取不到值
后台获取不到值方法一: <script> layui.use('upload', function () { var upload = layui.upload; //执行实例 var u ...
- echo -n 和echo -e 参数意义
echo -n 不换行输出 $echo -n "123" $echo "456" 1 2 最终输出 123456 而不是 123 456 1 2 3 4 5 6 ...
- 为 10000+ 业务系统提供数据可视化能力的 AntV 又进化了
小蚂蚁说: 2018 年 AntV 品牌日以知新.知心为主题,旨在让产品一直「知新」,与用户一直「知心」.AntV 是蚂蚁金服全新一代数据可视化解决方案,致力于提供一套简单方便.专业可靠.无限可能的数 ...
- phpredis基本操作
字符串,用于存储变动少的信息 创建对象 $red = Red::create(); 设置值 $red->set('name','张三'); 设置有效期 $red->set('name',' ...
- C#配置文件
今天为大家讲一下为什么有时候我们创建项目的时候没有自带的配置文件项目,如下: 图1没有自己的配置文件,图二有自己的配置文件. 其实很简单,那是因为很多时候我们创建项目的时候,默认就会创建.NET Fr ...
- String,StringBuilder区别,一个是常量,一个是可变量
String str="这就是爱的呼唤,这就是爱的奉献!!"; //这个str是不可变的字符串序列,要变会生成新的字符串,原字符串不变,是常量 StringBuilder sBui ...
- AtCoder Regular Contest 094 D Worst Case
Worst Case 思路: 使 a <= b 当 a == b 时 或者 a == b - 1 时,答案显然为 2 * (a - 1) 否则找到最大的 c ,使得 c * c < a * ...