The young and very promising cryptographer Odd Even has implemented the security module of a large system with thousands of users, which is now in use in his company.

The cryptographic keys are created from the product of two primes, and are believed to be secure because there is no known method for factoring such a product effectively. 
What Odd Even did not think of, was that both factors in a key should be large, not just their product. It is now possible that some of the users of the system have weak keys. In a desperate attempt not to be fired, Odd Even secretly goes through all the users keys, to check if they are strong enough. He uses his very poweful Atari, and is especially careful when checking his boss' key.

Input

The input consists of no more than 20 test cases. Each test case is a line with the integers 4 <= K <= 10 100 and 2 <= L <= 10 6. K is the key itself, a product of two primes. L is the wanted minimum size of the factors in the key. The input set is terminated by a case where K = 0 and L = 0.

Output

For each number K, if one of its factors are strictly less than the required L, your program should output "BAD p", where p is the smallest factor in K. Otherwise, it should output "GOOD". Cases should be separated by a line-break.

Sample Input

143 10
143 20
667 20
667 30
2573 30
2573 40
0 0

Sample Output

GOOD
BAD 11
GOOD
BAD 23
GOOD
BAD 31 题意:求给出的一个数,求k中是否有比L小的的因子,其中K是大数 思路:因为我们L范围只有1e6,所以我们找寻因子可以直接遍历1-(L-1),然后我们进行大数取余操作,直接看余数是否为0即可
但是这样的时间复杂度就超时了,字符串长度是100 * L范围1e6 * 20组数据 = 2*1e9 (超时)
这个时候我们就要进行优化20组数据我们无法优化,只能从大数取余和找因子这里入 1,找因子
我们可以只找素因子,如果素因子都不可以说明其他因子也行不通,所以我们可以进行素数筛法打表 2.大数取余
因为我们在进行找因子的时候我们每次都要进行大数取余,重复这个操作,我们就可以进行大数转换千进制,就可以在进行大数取余操作的时候大大缩减时间复杂度
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAX 1000100
using namespace std;
int n;
int prime[MAX+];
char str[];
void primetable()//素数打表
{
int ps=;
prime[ps++]=;
for(int i=;i<=MAX;i+=)
{
int flag=;
for(int j=;prime[j]*prime[j]<=i;j++)
if(!(i%prime[j]))
{
flag=;
break;
}
if(flag)
prime[ps++]=i;
}
}
int main()
{
primetable();
while(scanf("%s%d",str,&n)!=EOF)
{
if(str[]==''&&n==) break;
int len=strlen(str);
int ans=;
int a[];
for(int i=len-;i>=;)//转换成千进制
{
if(i<){
if(i==)
a[ans++]=str[i]-'';
else a[ans++]=str[i]-''+(str[i-]-'')*;
i=-;
}
else{
a[ans++]=str[i]-''+(str[i-]-'')*+(str[i-]-'')*;
i-=;
}
}
int flag=;
for(int i=;prime[i]<n;i++)//遍历素因子
{
long long sum=;
for(int j=ans-;j>=;j--)
{
sum=(sum*+a[j])%prime[i];
}
if(sum==)
{
printf("BAD %d\n",prime[i]);
flag=;
break;
}
}
if(flag==)
{
printf("GOOD\n");
}
}
}
												

POJ - 2635 E - The Embarrassed Cryptographer的更多相关文章

  1. POJ 2635 The Embarrassed Cryptographer

    大数取MOD... The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1 ...

  2. [ACM] POJ 2635 The Embarrassed Cryptographer (同余定理,素数打表)

    The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11978   A ...

  3. POJ 2635 The Embarrassed Cryptographer (千进制,素数筛,同余定理)

    The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15767   A ...

  4. (POJ2635)The Embarrassed Cryptographer(大数取模)

    The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13041 Accep ...

  5. POJ2635——The Embarrassed Cryptographer(高精度取模+筛选取素数)

    The Embarrassed Cryptographer DescriptionThe young and very promising cryptographer Odd Even has imp ...

  6. poj2635The Embarrassed Cryptographer(同余膜定理)

    The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15069   A ...

  7. HDU 2303 The Embarrassed Cryptographer

    The Embarrassed Cryptographer 题意 给一个两个素数乘积(1e100)K, 给以个数L(1e6), 判断K的两个素数是不是都大于L 题解 对于这么大的范围,素数肯定是要打表 ...

  8. poj 2635 The Embarrassed Cryptographer(数论)

    题目:http://poj.org/problem?id=2635 高精度求模  同余模定理. 题意: 给定一个大数K,K是两个大素数的乘积的值.再给定一个int内的数L 问这两个大素数中最小的一个是 ...

  9. POJ 2635 The Embarrassed Cryptographer 大数模

    题目: http://poj.org/problem?id=2635 利用同余模定理大数拆分取模,但是耗时,需要转化为高进制,这样位数少,循环少,这里转化为1000进制的,如果转化为10000进制,需 ...

随机推荐

  1. LeetCode--429--N叉树的层序遍历

    问题描述: 给定一个N叉树,返回其节点值的层序遍历. (即从左到右,逐层遍历). 例如,给定一个 3叉树 : 返回其层序遍历: [ [1], [3,2,4], [5,6] ] 说明: 树的深度不会超过 ...

  2. 20171104xlVBA制作联合成绩条

    Dim dGoal As Object Dim dCls As Object Sub 制作联合成绩条() Dim sht As Worksheet Dim HeadRng As Range Dim H ...

  3. Linux下安装 jdk

    转自 http://www.cnblogs.com/shihaiming/p/5809553.html 0.下载jdk8 登录网址:http://www.oracle.com/technetwork/ ...

  4. 3月23 格式布局及relative

    主要是针对格式布局的一些内容: 1:position:fix 锁定位置(相对于浏览器的位置),例如网上弹出的一些广告 <style type="text/css"> # ...

  5. SQL 经典回顾:JOIN 表连接操作不完全指南

    ​   2017-02-23 小峰 ITPUB 点击上方“蓝字”可以关注我们哦  |转载自:码农网 |原文链接:www.codeceo.com/article/sql-join-guide.html ...

  6. Oracle 用户,角色,权限等

    权限管理是 Oracle 系统的精华,不同用户登录到同一数据库中,可能看到不同数量的表,拥有不同的权限.Oracle 的权限分为系统权限和数据对象权限,共一百多种,如果单独对用户授权,很囧,有一些用户 ...

  7. MapReduce(四)

    MapReduce(四) 1.shuffle过程 2.map中setup,map,cleanup的作用. 一.shuffle过程 https://blog.csdn.net/techchan/arti ...

  8. MapReduce(一)

    MapReduce(一) 一.介绍 百度百科: MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算.概念"Map(映射)"和"Reduce(归约) ...

  9. hive top n

    hive 中窗口函数row_number,rank,dense_ran,ntile分析函数的用法 hive中一般取top n时,row_number(),rank,dense_ran()这三个函数就派 ...

  10. npm使用过程中出现的错误

    1.安装npm install axios -S报错install "npm ERR! Error: EPERM: operation not permitted" error 经 ...