7. 图的聚合操作

图的聚合操作主要的方法有:

(1) Graph.mapReduceTriplets():该方法有一个mapFunc和一个reduceFunc,mapFunc对图中的每一个EdgeTriplet进行处理,生成一个或者多个消息,并且将这些消息发送个Edge的一个或者两个顶点,reduceFunc对发送到每一个顶点上的消息进行合并,生成最终的消息,最后返回一个VertexRDD(不包括没有收到消息的顶点);

(2) Graph.pregel():该方法采用BSP模型,包括三个函数vprog、sendMsg和mergeMsg,vprog是运行在每个节点上的顶点更新函数,接收消息,然后对顶点属性更新,sendMsg生成发送给下一次迭代的消息,mergeMsg对同一个顶点接收到的多个消息进行合并,迭代一直进行到收敛,或者达到了设置的最大迭代次数为止。

代码:

    // 聚合操作
println("*************************************************************")
println("聚合操作")
println("*************************************************************")
println("找出年纪最大的追求者:")
val oldestFollower:VertexRDD[(String,Int)] = userGraph.mapReduceTriplets[(String,Int)](
// 将源顶点的属性发送给目标顶点,map过程
edge => Iterator((edge.dstId,(edge.srcAttr.name,edge.srcAttr.age))),
// 得到最大追求者,reduce过程
(a,b) => if(a._2>b._2) a else b
)
userGraph.vertices.leftJoin(oldestFollower){(id,user,optOldestFollower) =>
optOldestFollower match{
case None => s"${user.name} does not have any followers."
case Some(oldestAge) => s"The oldest age of ${user.name} \'s followers is ${oldestAge._2}(${oldestAge._1})."
}
}.collect.foreach{case(id,str) => println(str)}
println // 找出追求者的平均年龄
println("找出追求者的平均年龄:")
val averageAge:VertexRDD[Double] = userGraph.mapReduceTriplets[(Int,Double)](
// 将源顶点的属性(1,Age)发送给目标顶点,map过程
edge => Iterator((edge.dstId,(1,edge.srcAttr.age.toDouble))),
// 得到追求者的数量和总年龄
(a,b) => ((a._1+b._1),(a._2+b._2))
).mapValues((id,p) => p._2/p._1) userGraph.vertices.leftJoin(averageAge){(id,user,optAverageAge) =>
optAverageAge match{
case None => s"${user.name} does not have any followers."
case Some(avgAge) => s"The average age of ${user.name} \'s followers is $avgAge."
}
}.collect.foreach{case(id,str) => println(str)}
println // 聚合操作2
println("*************************************************************")
println("聚合操作2")
println("*************************************************************")
println("找出3到各顶点的最短距离:")
// 定义源点
val sourceId:VertexId = 3L
val initialGraph = graph.mapVertices((id,_) => if(id==sourceId) 0.0 else Double.PositiveInfinity)
val sssp = initialGraph.pregel(Double.PositiveInfinity)(
(id,dist,newDist) => math.min(dist,newDist),
// 权重计算
triplet=>{
if(triplet.srcAttr + triplet.attr < triplet.dstAttr){
Iterator((triplet.dstId, triplet.srcAttr+triplet.attr))
} else{
Iterator.empty
}
},
// 最短距离
(a,b) => math.min(a,b)
)
println(sssp.vertices.collect.mkString("\n"))

运行结果:

*************************************************************
聚合操作
*************************************************************
找出年纪最大的追求者:
The oldest age of Peter 's followers is 27(Henry).
The oldest age of Kate 's followers is 55(Charlie).
The oldest age of Henry 's followers is 55(Charlie).
The oldest age of Alice 's followers is 32(Peter).
The oldest age of Charlie 's followers is 35(Mike).
Mike does not have any followers. 找出追求者的平均年龄:
The average age of Peter 's followers is 27.0.
The average age of Kate 's followers is 45.0.
The average age of Henry 's followers is 45.0.
The average age of Alice 's followers is 29.5.
The average age of Charlie 's followers is 35.0.
Mike does not have any followers. *************************************************************
聚合操作2
*************************************************************
找出3到各顶点的最短距离:
(4,9.0)
(6,3.0)
(2,7.0)
(1,10.0)
(3,0.0)
(5,Infinity)

Spark GraphX实例(3)的更多相关文章

  1. Spark GraphX实例(1)

    Spark GraphX是一个分布式的图处理框架.社交网络中,用户与用户之间会存在错综复杂的联系,如微信.QQ.微博的用户之间的好友.关注等关系,构成了一张巨大的图,单机无法处理,只能使用分布式图处理 ...

  2. Spark GraphX实例(2)

    5. 图的转换操作 图的转换操作主要有以下的方法: (1) Graph.mapVertices():对图的顶点进行转换,返回一张新图: (2) Graph.mapEdges():对图的边进行转换,返回 ...

  3. 大数据技术之_19_Spark学习_05_Spark GraphX 应用解析 + Spark GraphX 概述、解析 + 计算模式 + Pregel API + 图算法参考代码 + PageRank 实例

    第1章 Spark GraphX 概述1.1 什么是 Spark GraphX1.2 弹性分布式属性图1.3 运行图计算程序第2章 Spark GraphX 解析2.1 存储模式2.1.1 图存储模式 ...

  4. Spark GraphX图处理编程实例

    所构建的图如下: Scala程序代码如下: import org.apache.spark._ import org.apache.spark.graphx._ // To make some of ...

  5. 1. Spark GraphX概述

    1.1 什么是Spark GraphX Spark GraphX是一个分布式图处理框架,它是基于Spark平台提供对图计算和图挖掘简洁易用的而丰富的接口,极大的方便了对分布式图处理的需求.那么什么是图 ...

  6. 转载:Spark GraphX详解

    1.GraphX介绍 1.1 GraphX应用背景 Spark GraphX是一个分布式图处理框架,它是基于Spark平台提供对图计算和图挖掘简洁易用的而丰富的接口,极大的方便了对分布式图处理的需求. ...

  7. Spark GraphX从入门到实战

      第1章 Spark GraphX 概述 1.1 什么是 Spark GraphX   Spark GraphX 是一个分布式图处理框架,它是基于 Spark 平台提供对图计算和图挖掘简洁易用的而丰 ...

  8. Spark + GraphX + Pregel

    Spark+GraphX图 Q:什么是图?图的应用场景 A:图是由顶点集合(vertex)及顶点间的关系集合(边edge)组成的一种网状数据结构,表示为二元组:Gragh=(V,E),V\E分别是顶点 ...

  9. Spark—GraphX编程指南

    Spark系列面试题 Spark面试题(一) Spark面试题(二) Spark面试题(三) Spark面试题(四) Spark面试题(五)--数据倾斜调优 Spark面试题(六)--Spark资源调 ...

随机推荐

  1. python 全栈开发,Day101(redis操作,购物车,DRF解析器)

    昨日内容回顾 1. django请求生命周期? - 当用户在浏览器中输入url时,浏览器会生成请求头和请求体发给服务端 请求头和请求体中会包含浏览器的动作(action),这个动作通常为get或者po ...

  2. mysql操作查询结果case when then用法举例

    举例1: 使用该查询,得出iFavoriteID,iFavUserType ,cUser,iArticleID,dFavoriteTime五个字段的值: SELECT iFavoriteID,CASE ...

  3. CSP 地铁修建 Kruskal (最小生成树+并查集)

    问题描述 A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市决定在1号到n号枢纽间修建一条地铁. 地铁由很多段隧道组成,每段隧道连接两个交通枢纽.经过勘探,有m段隧道作为候选,两个交通 ...

  4. Codeforces Round #437 (Div. 2, based on MemSQL Start[c]UP 3.0 - Round 2)

    Problem A Between the Offices 水题,水一水. #include<bits/stdc++.h> using namespace std; int n; ]; i ...

  5. POJ2065 SETI 高斯消元

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2065 题意概括 多组数据,首先输入一个T表示数据组数,然后,每次输入一个质数,表示模数,然后,给出一 ...

  6. c++中关于用stringstream进行的类型转化

    1.将int转化成string类型 #include <iostream> #include <sstream> using namespace std; int main() ...

  7. POJ - 3080 Blue Jeans 【KMP+暴力】(最大公共字串)

    <题目链接> 题目大意: 就是求k个长度为60的字符串的最长连续公共子串,2<=k<=10 限制条件: 1.  最长公共串长度小于3输出   no significant co ...

  8. 012.Docker私有仓库多Harbor同步部署

    一 Harbor主从介绍 harbor官方默认提供主从复制的方案来解决镜像同步问题,通过复制的方式,我们可以实时将测试环境harbor仓库的镜像同步到生产环境harbor,类似于如下流程: Harbo ...

  9. Python常用模块--json

    官方解释: JSON(JavaScript Object Notation)是一种轻量级的数据交换格式.人类很容易读写.机器很容易解析和生成.它基于 JavaScript编程语言的一部分, 标准ECM ...

  10. Python开发之日志记录模块:logging

    1 引言 最近在开发一个应用软件,为方便调试和后期维护,在代码中添加了日志,用的是Python内置的logging模块,看了许多博主的博文,颇有所得.不得不说,有许多博主大牛总结得确实很好.似乎我再写 ...